Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
P. Ngà
Xem chi tiết
hoa thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 19:50

1: Khi m=3 thì hệ phương trình (1) trở thành:

\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)

2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)

hay m=-2/3

huong tra
Xem chi tiết
๖ۣۜHả๖ۣۜI
8 tháng 12 2021 lúc 20:18

2,4

Chanh Xanh
8 tháng 12 2021 lúc 20:18

(2) Hệ chồi

(4) Hệ rễ

Minh Hiếu
8 tháng 12 2021 lúc 20:18

(2) Hệ chồi

(4) Hệ rễ

Illyasviel
Xem chi tiết
hoa thi
Xem chi tiết
Na Gaming
18 tháng 5 2022 lúc 19:26

lỗi hình

Pé Pïnʚɞ︵²⁰⁰⁴
18 tháng 5 2022 lúc 19:27

lx hìnk còi

Minh
Xem chi tiết
Akai Haruma
15 tháng 2 2020 lúc 19:25

Lời giải:

1. Khi $a=2$ thì \(\left\{\begin{matrix} x-2y=1\\ 2x+y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0\end{matrix}\right.\)

2. HPT \(\Leftrightarrow \left\{\begin{matrix} x=1+ay\\ ax+y=2\end{matrix}\right.\Rightarrow a(1+ay)+y=2\)

\(\Leftrightarrow y(a^2+1)=2-a(*)\)

Vì $a^2+1\neq 0$ với mọi $a$ nên $(*)$ có nghiệm $y$ duy nhất. $y$ duy nhất dẫn đến $x$ duy nhất

Do đó HPT đã cho luôn có nghiệm $(x,y)$ duy nhất

3.

Ta có: \(y=\frac{2-a}{a^2+1}\Rightarrow x=1+ay=\frac{2a+1}{a^2+1}\)

Để hệ có nghiệm dương thì \(\left\{\begin{matrix} \frac{2-a}{a^2+1}>0\\ \frac{2a+1}{a^2+1}>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2-a>0\\ 2a+1>0\end{matrix}\right.\Rightarrow 2> a>\frac{-1}{2}\)

Khách vãng lai đã xóa
DŨNG
Xem chi tiết
Akai Haruma
26 tháng 5 2022 lúc 17:51

Lời giải:

Để pt có 2 nghiệm thì trước hết đây phải là pt bậc 2. Nghĩa là $m+1\neq 0\Leftrightarrow m\neq -1$

Với $m\neq -1$, để pt có 2 nghiệm thì:

$\Delta'=(m+2)^2-(m-3)(m+1)\geq 0$

$\Leftrightarrow m^2+4m+4-(m^2-2m-3)\geq 0$

$\Leftrightarrow 6m+7\geq 0$

$\Leftrightarrow m\geq \frac{-7}{6}$

Áp dụng hệ thức Viet:

$x_1+x_2=\frac{2(m+2)}{m+1}=\frac{2m+4}{m+1}$

$x_1x_2=\frac{m-3}{m+1}$

$x_1+x_2+kx_1x_2=\frac{2m+4+k(m-3)}{m+1}=\frac{m(k+2)+(4-3k)}{m+1}$

Để hệ thức không phụ thuộc vào m thì $m(k+2)+(4-3k)$ có thể phân tích dưới dạng $t(m+1)$

Tức là: $k+2=4-3k$

$\Leftrightarrow k=\frac{1}{2}$

Khi đó: $x_1+x_2+\frac{1}{2}x_1x_2=\frac{\frac{5}{2}(m+1)}{m+1}=\frac{5}{2}$ 

Đây chính là hệ thức liên hệ giữa $x_1,x_2$ không phụ thuộc $m$

Lê Phương Linh
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Huy Tú
24 tháng 2 2022 lúc 7:30

1, bạn tự giải

2, 

\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Vậy pt luôn có 2 nghiệm x1 ; x2 khi \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\left(luondung\right)\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=10\)

Thay vào ta được \(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6=10\Leftrightarrow4m^2-6m=0\)

\(\Leftrightarrow m\left(4m-6\right)=0\Leftrightarrow m=0;m=\dfrac{3}{2}\)