Giải HPT:
`{(ax+by=c),(bx+ay=c),(cx+ay=b):}`
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Bài 1 Tính giá trị biểu thức
A= ax+bx+cx+ay+by+cy+az+bz+ cz biết a+b+c=-3 và x+y+z=-6
B= ax-bx-cx-ay+by+cy-az+bz+ cz biết a-b-c=0 và x-y-z=2016
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
ab+ac
ab-ac+ad
ax-bx-cx-dx
a(b+c)-d(b+c)
ac-ad+bc-bd
ax+by+bx+ay
a) \(ab+ac=a.\left(b+c\right)\)
b) \(ab-ac+ad=a.\left(b-c+d\right)\)
c) \(ax-bx-cx-dx=x.\left(a-b-c-d\right)\)
d) \(a.\left(b+c\right)-d.\left(b+c\right)=ab+ac-db-dc=b.\left(a-d\right)+c.\left(a-d\right)=\left(a-d\right).\left(b+c\right)\)
e) \(ac-ad+bc-bd=a.\left(c-d\right)+b.\left(c-d\right)=\left(c-d\right).\left(a+b\right)\)
f) \(ax+by+bx+ay=a.\left(x+y\right)+b.\left(y+x\right)=\left(x+y\right).\left(a+b\right)\)
CHÚC BN HỌC TỐT!!!!!
Biết ax+by=c ; bx+cy=a ; cx+ay=b
Chứng minh rằng : a^3+b^3+c^3=3abc
\(\left\{{}\begin{matrix}ax+by=c\\bx+cy=a\\cx+ay=b\end{matrix}\right.\)
Cộng đại số => \(ax+by+bx+cy+cx+ay=a+b+c\)
<=>\(\left(a+b+c\right)x+\left(a+b+c\right)y=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)-\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(x+y-1\right)=0\)
+TH1:\(\left(a+b+c\right)=0\)
=>\(a+b=-c\)
=>\(\left(a+b\right)^3=-c^3\)
=>\(a^3+b^3+3a^2b+3ab^2=-c^3\)
=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
=>\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà a+b=-c => -3ab(a+b)=-3ab(-c)=3abc
=>\(a^3+b^3+c^3=3abc\)
+TH2:x+y=1
<=>y=1-x
=>\(\left\{{}\begin{matrix}ax+b\left(1-x\right)=c\\bx+c\left(1-x\right)=a\\cx+a\left(1-x\right)=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+b-bx=c\\bx+c-cx=a\\cx+a-ax=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(a-b\right)x=c-b\\\left(b-c\right)x=a-c\\\left(c-a\right)x=b-a\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
=>a=b=c
\(\Rightarrow a^3+b^3+c^3=3a^3\\ 3abc=3a^3\\ \Rightarrow a^3+b^3+c^3=3abc\)
Nếu \(\left\{{}\begin{matrix}a-b\ne0\\b-c\ne0\\c-a\ne0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=\dfrac{c-b}{a-b}\left(1\right)\\x=\dfrac{a-c}{b-c}\left(2\right)\\x=\dfrac{b-a}{c-a}\end{matrix}\right.\)
Ta có : (1)=(2)=x suy ra \(\dfrac{c-b}{a-b}=\dfrac{a-c}{b-c}\Rightarrow\dfrac{b-c}{b-a}=\dfrac{a-c}{b-c}\Rightarrow\left(b-c\right)\left(b-c\right)=\left(a-c\right)\left(b-a\right)^{ }\Rightarrow b^2-2bc+c^2=a^2+ab-bc+ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\\ \\ \\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=>a=b=c(đưa về trường hợp như trên)
Cho \(\dfrac{bz+cy}{x\left(-ax+by+cz\right)}=\dfrac{cx+az}{y\left(ax-by+cz\right)}=\dfrac{ay+bx}{z\left(ax+by-cz\right)}\)
CMR : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
b) \(\dfrac{x}{a\left(b^2+c^2-a^2\right)}=\dfrac{y}{b\left(a^2+c^2-b^2\right)}=\dfrac{z}{c\left(a^2+b^2-c^2\right)}\)
Viết dưới dạng tích các tổng sau : ab+ac ; ab -ac+ad; ax -bx-cx+dx; a(b+c) - d (b+c); ac-ad+bc-bd; ax+by+bx+ay
ab + ac = a(b + c)
ab - ac + ad = a(b - c + d)
ax - bx - cx + dx
=x(a - b - c + d)
ab+ac=a(b+c)
ab-ac+ad=a(b-c+d)
ax-bx-cx+dx=x(a-b-c+d)
phân tích
x^2+2xy+y^2-xz-yz
x^2-4xy+y^2-z^2+4zt+t^2
ax^2+cx^2-ay+ay^2-ay+ay^2
ax^2+ay^2-bx^2-by^2+b-a
ac^2-ad-bc^2+cd+bd-c^3
\(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
mk chỉnh lại đề
\(x^2-2xy+y^2-z^2+2zt+t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
mk chỉnh lại đề:
\(ax^2+cx^2-ay+ay^2-cy+cy^2\)
\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)
\(=\left(a+c\right)\left(x^2-y+y^2\right)\)
\(ax^2+ay^2-bx^2-by^2+b-a\)
\(=x^2\left(a-b\right)+y^2\left(a-b\right)-\left(a-b\right)\)
\(=\left(a-b\right)\left(x^2+y^2-1\right)\)
\(ac^2-ad-bc^2+cd+bd-c^3\)
\(=a\left(c^2-d\right)-b\left(c^2-d\right)-c\left(c^2-d\right)\)
\(=\left(c^2-d\right)\left(a-b-c\right)\)
Cho biết : ax +by=c
bx+cy=a
cx +ay=b
Cm a^3+b^3+c^3=3abc