Thực hiện phép chia:
a) ( x 3 - x 2 - 5x - 3) : (x - 3);
b) ( x 4 + x 3 - 6 x 2 -5x + 5) : ( x 2 + x - 1).
Thực hiện các phép chia:
a) \(20{x^3}{y^5}:\left( {5{x^2}{y^2}} \right)\)
b) \(18{x^3}{y^5}:\left[ {3{{\left( { - x} \right)}^3}{y^2}} \right]\)
`a, 20x^3y^5 : 5x^2y^2`
`= (20:5)x^(3-2) . y^(5-2)`
`= 4xy^3`
`b, 18x^3y^5 : (3(-x^3)y^2)`
`= -(18:3)y^(5-3)`
`= -6y^2`
Thực hiện các phép chia:
a) \(\left( {5ab - 2{a^2}} \right):a\) b) \(\left( {6{x^2}{y^2} - x{y^2} + 3{x^2}y} \right): - 3xy\)
`a, (5ab - 2a^2):a`
`= 5b - 2a`
`b, (6x^2y^2-xy^2+3x^2y) : (-3xy)`
`= -2xy + y/3 - x`.
Thực hiện các phép chia:
a) \(\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\) b) \(\left( {7{x^4}{y^2} - 2{x^2}{y^2} - 5{x^3}{y^4}} \right):\left( {3{x^2}y} \right)\)
`a, (4x^3y^2 - 8x^2y + 10xy) : 2xy`
`= 2x^2y - 4x + 5`.
`b, 7x^4y^2 - 2x^2y^2 - 5x^3y^4 : 3x^2y`
`= 7/3 x^2y - 3/2y - 5/3xy^3`
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia:
a) (x2 + 2xy + y2) : (x + y)
b) (125x3 + 1) : (5x + 1)
c) (x2 – 2xy + y2) : (y – x)
Lời giải:
a) (x2 + 2xy + y2) : (x + y)
= (x + y)2 : (x + y)
= x + y
b) (125x3 + 1) : (5x + 1)
= [(5x)3 + 1] : (5x + 1)
= (5x + 1)[(5x)2 – 5x + 1]] : (5x + 1)
= (5x)2 – 5x + 1
= 25x2 – 5x + 1
c) (x2 – 2xy + y2) : (y – x)
= (x – y)2 : [-(x – y)]
= -(x – y)
= y – x
Hoặc (x2 – 2xy + y2) : (y – x)
= (y2 – 2yx + x2) : (y – x)
= (y – x)2 : (y – x)
= y – x
\(\text{a) (x^2 + 2xy + y^2) : (x + y)}\\ \left(x+y\right)^2:\left(x+y\right)=x+y\)
Tìm x biết:x(x+3)-x^2+9=0
Thực hiện phép chia:A=2x^2+3x-2 cho B=2x-1
\(a,\Rightarrow x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x-x+3\right)=0\\ \Rightarrow3\left(x+3\right)=0\Rightarrow x=-3\\ b,A:B=\left(2x^2-x+4x-2\right):\left(2x-1\right)\\ =\left[x\left(2x-1\right)+2\left(2x-1\right)\right]:\left(2x-1\right)\\ =x+2\)
Thực hiện phép chia:
a) 20a4b5c2 : (-5ab2c)2
b) (-15x2y3)7 : (15xy3)6-(32x18y5) : (-4x5y)2
c) \(-\dfrac{1}{3}\)x5y2 : (-2xy)-(x2+2x+1) : (x+1)
a: \(\dfrac{20a^4b^5c^2}{\left(-5ab^2c\right)^2}\)
\(=\dfrac{20a^4b^5c^2}{25a^2b^4c^2}\)
\(=\dfrac{4}{5}a^2b\)
b: \(\dfrac{\left(-15x^2y^3\right)^7}{\left(15xy^3\right)^6}-\dfrac{32x^{18}y^5}{\left(-4x^5y\right)^2}\)
\(=\dfrac{-15^7\cdot x^{14}\cdot y^{21}}{15^6\cdot x^6\cdot y^{18}}-\dfrac{32x^{18}y^5}{16x^{10}y^2}\)
\(=-15x^8y^3-2x^8y^3\)
c: \(\dfrac{-\dfrac{1}{3}x^5y^2}{-2xy}-\dfrac{x^2+2x+1}{x+1}\)
\(=\dfrac{2}{3}x^3y-x-1\)
Bài 1: Thực hiện phép chia:
a) \(\dfrac{5}{x}+\dfrac{x}{x+6}-\dfrac{30}{x^2+6x}\) với x ≠ -6 và x ≠ 0
b) \(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\) với x ≠ \(\pm\)1
c) \(\dfrac{3x^2+2x+1}{x^3-1}-\dfrac{1-x}{x^2+x+1}-\dfrac{2}{x-1}\) với x ≠ 1
\(a,=\dfrac{5x+30+x^2-30}{x\left(x+6\right)}=\dfrac{x\left(x+5\right)}{x\left(x+6\right)}=\dfrac{x+5}{x+6}\\ b,=\dfrac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x+3}{\left(x-1\right)^2}\)
\(c,=\dfrac{3x^2+2x+1+x^2-2x+1-2x^2-2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\\ =\dfrac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x}{x^2+x+1}\)
Thực hiện phép chia:
a) (-y^2):y^4
b) (-x)^5:(-x)^3
Các bạn giúp tớ với!
Thực hiện phép chia:
a) (-y^2):y^4=\(\dfrac{-1}{y^2}\)
b) (-x)^5:(-x)^3=(-x)^2
a) \(\left(-y^2\right):y^4=\dfrac{-1}{y^2}\)
b) \(\left(-x\right)^5:\left(-x\right)^3=\left(-x\right)^2=x^2\)
a, Thực hiện phép nhân 4x\(^2\) ( x\(^2\) - 5x + 2 )
b, Thực hiện phép chia ( 2x\(^2\) - 5x + 3 ) : ( 2x - 3 )
a) 4x²(x² - 5x + 2)
= 4x².x² - 4x².5x + 4x².2
= 4x⁴ - 20x³ + 8x²
b) (2x² - 5x + 3) : (2x - 3)
= (2x² - 3x - 2x + 3) : (2x - 3)
= [(2x² - 3x) - (2x - 3)] : (2x - 3)
= [x(2x - 3) - (2x - 3)] : (2x - 3)
= (2x - 3)(x - 1) : (2x - 3)
= x - 1
a, \(4x^2\left(x^2-5x+2\right)\\ =4x^4-20x^3+8x^2\)
b, \(\left(2x^2-5x+3\right):\left(2x-3\right)\\ =x-1\)
Thực hiện phép tính chia :
a, ( x^3 - x^2 - 5x - 3 ) : ( x - 3 )
\(\left(x^3-x^2-5x-3\right):\left(x-3\right)\\ =\left[\left(x^3-3x^2\right)+\left(2x^2-6x\right)+\left(x-3\right)\right]:\left(x-3\right)\\ =\left[x^2\left(x-3\right)+2x\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\\ =\left[\left(x-3\right)\left(x^2+2x+1\right)\right]:\left(x-3\right)\\ =x^2+2x+1\)