Cho 3y - x = 6. Tính giá trị của biểu thức A = x y - 2 + 2 x - 3 y x - 6
Cho 3y-x=6. Tính giá trị của biểu thức: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}\)
Bài này quá dễ:vv
Ta có 3y-x=6
=> \(\left\{{}\begin{matrix}3y=6+x\\x=3y-6\end{matrix}\right.\)
Thay vào A ta có: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}=\dfrac{3y-6}{y-2}+\dfrac{2x-6-x}{x-6}=\dfrac{3\left(y-2\right)}{y-2}+\dfrac{x-6}{x-6}=3+1=4\)Vậy khi 3y-x=6 thì A=4
Cho 3y-x = 6. Tính giá trị của biểu thức:
A=( x/y-2) +(2x-3y/ x-6)
\(3y-x=6\) => \(x=3y-6\)
Thay \(x=3y-6\) vào biểu thức A. Ta có:
\(A=\left(\frac{3y-6}{y-2}\right)+\left(\frac{2\left(3y-6\right)-3y}{3y-6-6}\right)=\left(\frac{3\left(y-2\right)}{y-2}\right)+\left(\frac{6y-12-3y}{3y-12}\right)\)
\(A=\left(\frac{3\left(y-2\right)}{y-2}\right)+\left(\frac{3y-12}{3y-12}\right)=3+1=4\)
bn \(2x-\frac{3y}{x}-6\)
hay là \(\frac{2x-3y}{x-6}\)
CHo (x + 3y)^3 - 6(x+3y)^2 + 12(x +3y) =-19. Tính giá trị của biểu thức x +3y
\(\Leftrightarrow\left(x+3y\right)^3-6\left(x+3y\right)^2+12\left(x+3y\right)-8=-27\)
\(\Leftrightarrow\left(x+3y-2\right)^3=-27\)
\(\Leftrightarrow\left(x+3y-2\right)^3=\left(-3\right)^3\)
\(\Rightarrow x+3y-2=-3\)
\(\Rightarrow x+3y=-1\)
Cho \(A = - ( - 4x + 3y),B = 4x + 3y,C = 4x - 3y\). Khi tính giá trị của biểu thức tại \(x = - 1\) và \(y = - 2\), bạn An cho rằng giá trị của các biểu thức A và B bằng nhau, bạn Bình cho rằng giá trị của các biểu thức A và C bằng nhau. Theo em, bạn nào đúng? Vì sao?
Thay giá trị \(x = - 1\) và \(y = - 2\) vào các biểu thức đã cho, ta có:
\(A = - ( - 4x + 3y) = - ( - 4. - 1 + 3. - 2) = - (4 + - 6) = - ( - 2) = 2\).
\(B = 4x + 3y = 4. - 1 + 3. - 2 = - 4 + - 6 = - 10\).
\(C = 4x - 3y = 4.( - 1) - 3.( - 2) = - 4 - - 6 = - 4 + 6 = 2\).
Ta thấy 2 ≠ -2 = 2. Do vậy, khi thay giá trị \(x = - 1\) và \(y = - 2\) vào các biểu thức đã cho ta thấy giá trị của các biểu thức A và C bằng nhau.
Vậy bạn Bình nói đúng.
Cho đa thức \(A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\)
a) Thu gọn A. Tìm bậc của đa thức A
b) Tính giá trị biểu thức A tại x = 0,1 và y = -2.
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)
Bậc: 2
b, Thay x=0,1 và y=-2 vào A ta có:
\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)
\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)
Bậc: 2
b, Thay x=0,1 và y=-2 vào A ta có:
\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)
Bài 3:
a, Tính giá trị của biểu thức A = \(5xy-10+3y\) tại \(x=2\) và \(y=-3\)
b, Tính giá trị của biểu thức B = \(8xy^2-xy-2x-10\) tại \(x=1\) và \(y=-1\)
a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)
b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)
=8+1-2-10
=-3
a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49
b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10
=8+1-2-10
=-3
Cho x/y=2/3.tính giá trị biểu thức P=5x+3y/6x-7y
Cho x/y=3/5.tính giá trị biểu thức Q=x+y/x-y
cho x,y thảo mãn x^2 + 3y^2 = 4xy. Tính giá trị của biểu thức A= \(\frac{2x+3y}{x-2y}\)
Ta có : \(x^2+3y^2=4xy\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)
Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)
Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)
Ta có:
\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)
TH1: x=3y
\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)
TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)
cảm ơn 2 bạn rất nhiều, mình rất muôn bình chọn cho cả 2 nhưng rất tiếc chỉ được 1 bạn. thực ra mình định bình chọn cho bạn làm đầu tiên nhưng mình lại lỡ ấn mất rồi. cho mình xin lỗi nha
Cho biểu thức A = \(\dfrac{1}{x^3+3x^2+xy^2+3y^2}\)
a. Tìm điều kiện xác định của A
b. Tính giá trị của biểu thức A tại x = 0; y = 0
\(a,ĐK:x\ne-3;x\ne0;y\ne0\\ b,A=\dfrac{1}{x^2\left(x+3\right)+y^2\left(x+3\right)}=\dfrac{1}{\left(x^2+y^2\right)\left(x+3\right)}\\ x=y=0\Leftrightarrow A\in\varnothing\)