x\(^2\) - y\(^2\) + 17x +17y
cho x;y thuộc N thỏa mãn: (16x+17y)(17x+16y) chia hết cho 11
CMR : (16x+17y)(17x+16y) chia hết cho 121
A= 16x+17y
B= 17x +16y Vì A.B chia hết cho 11 => A chia hết cho 11 hoặc B chia hết cho 11
ta có: 17 A -16B = 16.17x + 17.17y - 16.17x -16.16y = 33y chia hết cho 11
=>Nếu A chia hết cho 11 => B chia hết cho 11
hoặc B chia hết cho 11 => A chia hết cho 11
Vậy A và B chia hết cho 11
=> A.B chia hết cho 11.11 =121
Tìm tất cả các cặp số nguyên dương x,y thoả mãn: \(4x^2\left(x+17x\right)-68xy+17y^2=161312\)
cho x,y,z là các số thực dương thỏa mãn : \(4x^2+4y^2+17xy+5x+5y\ge1\)Tìm GTNN của \(P=17x^2+17y^2+16xy\)
ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)
\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)
\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)
Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)
Hay là:
\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)
Việc còn lại là của mọi người.
Dòng đầu là \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-1\right)\)!
Em đánh dư./
Với x, y là các số thực dương thay đổi thỏa mãn điều kiện: \(4x^2+4y^2+17xy+5x+5y\ge1\). Tính GTNN của biểu thức P=\(17x^2+17y^{2^{ }}+16xy\)
\(1\le5\left(x+y\right)+4\left(x+y\right)^2+9xy\le5\left(x+y\right)+4\left(x+y\right)^2+\frac{9}{4}\left(x+y\right)^2\)
\(\Leftrightarrow25\left(x+y\right)^2+20\left(x+y\right)-4\ge0\)
\(\Rightarrow x+y\ge\frac{2\sqrt{2}-2}{5}\)
\(P=17\left(x+y\right)^2-18xy\ge17\left(x+y\right)^2-\frac{9}{2}\left(x+y\right)^2=\frac{25}{2}\left(x+y\right)^2\ge\frac{25}{2}\left(\frac{2\sqrt{2}-2}{5}\right)^2=6-4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)
Cho x, y > 0 thỏa mãn: 4x2+4y2+17xy+5x+5y \(\ge1\)
Tìm min A: 17x2+17y2+16xy
Giúp mình với mai mình phải nộp rồi T^T
Với x,y là các số thực dương thay đổi thoả mãn điều kiện:4x2+4y2+17xy+5x+5y\(\ge\)1
Tìm giá trị nhỏ nhất của biểu thức
P=17x2+17y2+16xy
Tìm x,y,z thuộc Z biết:
a, |17x-5y| + |17y-5x| = 2013
b, |2x-3y+1| + |5y-4z+3| + |2z-6x+5| = 2012
c, |19x+5y| + 1975 = |19y+5x| + 2010|x|
Cho x, y > 0 thỏa mãn: 4x2+4y2+17xy+5x+5y ≥1
Tìm min A=17x2+17y2+16xy
A= x3y(x^4-y^3)-x^2y(x^5-y^3) với x=-1, y=2
B=x^3y^3.(x^4-y^4)-x^3y^4(x^2-y^3) với x=1, y=2
C= x^4-17x^3+17x^2+17x+20 với x=16
c: Ta có: x=16
nên x+1=17
Ta có: \(C=x^4-17x^3+17x^2-17x+20\)
\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
=20-x
=4
Tìm nghiệm nguyên x,y của phương trình x2+17y2 + 34xy+51(x+y)=1740