giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{-1}{2}x+\dfrac{1}{3}y=0\\y-x=1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x\left(y-2\right)=\left(x+2\right)\left(y-4\right)\\\left(x-3\right)\left(2y+7\right)=\left(2x-7\right)\left(y+3\right)\end{matrix}\right.\)
Giải hệ pt sau :
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{matrix}\right.\)
Giải các hệ phương trình sau
a,\(\left\{{}\begin{matrix}\sqrt{3}x-y=\sqrt{2}\\x-\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)
a) Giải hệ phương trình \(\left\{{}\begin{matrix}x^2=y+1\\y^2=x+1\end{matrix}\right.\)
b) Giải phương trình \(\sqrt{x+3}\)= 4x2+5x-1
giải các hệ phương trình sau:
1, \(\left\{{}\begin{matrix}\left(x+2\right)\left(y-2\right)=xy\\\left(x+4\right)\left(y-3\right)=xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{1}{x-3}+\frac{1}{y}=2\\\frac{2}{x-3}-\frac{3}{y}=1\end{matrix}\right.\)
cho hpt:
\(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\) . Tìm m để hpt có nghiệm (x;y) là các số dương
Giải hệ phương trình: \(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x+\left(\sqrt{2}+1\right)y=3\sqrt{2}-1\\\left(\sqrt{2}+1\right)x+\left(\sqrt{2}-1\right)y=3\sqrt{2}+1\end{matrix}\right.\)
Tìm MIN:
\(G=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Tìm x,y biết:
\(\left\{{}\begin{matrix}x+3y=10\\x-2y=0\end{matrix}\right.\)