Biến đổi lại về dạng : \(\left\{{}\begin{matrix}\left(x-y\right)\left(x+y\right)^2=45\\\left(x-y\right)\cdot\left(x^2+y^2\right)=85\end{matrix}\right.\)
Nếu x = y => điều này vô lí.
Vậy x khác y => x - y khác 0.
Chia từng vế phương trình thứ nhất cho phương trình thứ hai, ta có :
\(\dfrac{\left(x+y\right)^2}{x^2+y^2}=\dfrac{9}{17}\Leftrightarrow17\left(x+y\right)^2=9\left(x^2+y^2\right)\Leftrightarrow4x^2+17xy+4y^2=0\)
Nhận thấy y khác 0, vì nếu y = 0 thì x = 0 (vô lí vì x khác y).
Chia cả hai vế của phương trình cuối cho \(y^2\), ta có \(4\left(\dfrac{x}{y}\right)^2+17\left(\dfrac{x}{y}\right)+4=0\)
Đặt \(\dfrac{x}{y}=a\Rightarrow4a^2+17a+4=0\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4y\\y=-4x\end{matrix}\right.\)
Kết luận : Hệ đã cho có hai nghiệm là : \(\left(x;y\right)=\left(4;-1\right),\left(1;-4\right)\)