4x^2 -49
phân tích đa thức thành nhân tử
Phân tích đa thức đa thức thành nhân tử : 4x^2-y^2+4x+1
4x2-y2+4x+1
=(4x2+4x+1)-y2
=(2x+1)2-y2
=(2x+1-y)(2x+1+y)
bài này tớ cũng ko chắc:
\(4x^2-y^2+4x+1=\left(4x+4x^2+1\right)-y^2= \left(2x+1\right)^2-y^2\)
\(=\left(2x+1\right)\left(2x+1\right)-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(4x^2+4x-3\)
\(4x^2+4x+1-4\)
\(\left(2x+1\right)^2-2^2\)
\(\left(2x+1-2\right)\left(2x+1+2\right)\)
\(\left(2x-1\right)\left(2x+3\right)\)
Trả lời:
4x2 + 4x - 3
= [ ( 2x )2 + 2.2x.1 + 1 ] - 4
= ( 2x + 1 )2 - 4
= ( 2x + 1 - 2 ) ( 2x + 1 + 2 )
= ( 2x - 1 ) ( 2x + 3 )
phân tích đa thức thành nhân tử
1. 4x^2-4x+1
2. 4x^2-4x-3
\(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\\ ---\\ 4x^2-4x-3\\ =4x^2-4x+1-4\\ =\left(2x-1\right)^2-2^2=\left(2x-1-2\right)\left(2x-1+2\right)\\ =\left(2x-3\right)\left(2x+1\right)\)
1: =(2x)^2-2*2x*1+1^2
=(2x-1)^2
2: =4x^2-6x+2x-3
=2x(2x-3)+(2x-3)
=(2x-3)(2x+1)
X^4-x^2+4x-4x Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử
4x\(^4\)-4x\(^3\)-7x\(^2\)-4x+4
\(4x^4-8x^3+4x^3-8x^2+x^2-2x-2x+4\\ =4x^3\left(x-2\right)+4x^2\left(x-2\right)+x\left(x-2\right)-2\left(x-2\right)\\ =\left(x-2\right)\left(4x^3+4x^2+x-2\right)\\ =\left(x-2\right)\left(4x^3-2x^2+6x^2-3x+4x-2\right)\\ =\left(x-2\right)\left[2x^2\left(2x-1\right)+3x\left(2x-1\right)+2\left(2x-1\right)\right]\\ =\left(x-2\right)\left(2x-1\right)\left(2x^2+3x-2\right)\)
Phân tích đa thức thành nhân tử : (x^2 + x)^2 + 4x^2 + 4x - 12
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\\ =\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
=\(x^4+2x^3+x^2+4x^2+4x-12\)
=\(x^4+2x^3+5x^2+4x-12\)
=\(x^4-x^3+3x^3-3x^2+8x^2+4x-12\)
=\(x^3(x-1)+3x^2(x-1)+4(2x^2+x-3)\)
=\(x^3(x-1)+3x^2(x-1)+4(2x^2-2x+3x-3)\)
=\(x^3(x-1)+3x^2(x-1)+4[2x(x-1)+3(x-1)]\)
=\(x^3(x-1)+3x^2(x-1)+4(x-1)(2x+3)\)
=\((x-1)[x^3+3x^2+4(2x+3)]\)
=\((x-1)(x^3+3x^2+8x+12)\)
Phân tích đa thức thành nhân tử : (x^2+x)^2 + 4x^2 + 4x - 12
\(\left(x^2+x\right)^2+\left(4x^2+4x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
Phân tích đa thức 4x^2 - 9y^2 + 4x - 6y thành nhân tử ta được
4x2 - 9y2 + 4x - 6y
= (2x - 3y)(2x + 3y) + 2(2x - 3y)
= (2x - 3y)(2x + 3y + 2)
\(4x^2-9y^2+4x-6y\)
\(=\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x+1-3y-1\right)\left(2x+1+3y+1\right)\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)