Gía trị của biểu thức \(M=sin^230^o+sin^260^o\) bằng:
A. 0
B. 1
C. 2
D. 3
Giá trị của \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)?
Rút gọn \(4\sqrt{x}\left(x>0\right)\)
Tìm x \(\sqrt[3]{x+1}+5=2\)
Giá trị của biểu thức:
sin 36\(^0\)-cos54\(^0\)+cos60\(^0\)
sin \(^210^0\)+sin\(^230^0\)+sin\(^280^0\)+sin\(^260^0\)
a: \(\sin36^0-\cos54^0+\cos60^0\)
\(=\sin36^0-\sin36^0+\dfrac{1}{2}=\dfrac{1}{2}\)
b: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^230^0+\sin^260^0\right)\)
=1+1=2
`sin36^o -cos54^o +cos60^o`
`=cos54^o -cos54^o +cos60^o`
`=cos60^o=1/2`
_____________________________________________
`sin^2 10^o +sin^2 30^o +sin^2 80^o +sin^2 60^o`
`=cos^2 80^o +cos^2 60^o +sin^2 80^o +sin^2 60^o`
`=(cos^2 80^2 +sin^2 80^o )+(cos^2 60^o +sin^2 60^o )`
`=1+1=2`
1. Rút gọn các biểu thức:
a) \(\sin40^o-\cos50^o\)
b) \(\sin^230^o+\sin^240^o+\sin^250^o+\sin^260^o\)
a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)
b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)
= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)
= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)
= \(1+1=2\)
a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.
vd: \(sin30^o=cos70^o\)
b) Gợi ý: \(sin^2+cos^2=1\)
bài 1: Tính giá trị của các biểu thức sau:
a, \(\cos^215^o+\cos^225^o+\cos^235^o+\cos^245^o+cos^255^o+cos^265^o+cos^275^o\)
b,\(\sin^210^o-sin^220^o-sin^230^o-sin^240^o-sin^250^o-sin^270^o+sin^280^o\)
c,\(\sin15^o+\sin75^o-cos15^o-cos75^o+\sin30^o\)
Giải giúp e vs m.n
a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)
=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)
=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)
b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)
=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)
=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)
c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)
Tính giá trị biểu thức:
a) \(\sin^230^0-\sin^240^0-\sin^250^0+\sin^260^0\)
b) \(\cos^225^0-\cos^235^0+\cos^245^0-\cos^255^0+\cos^265^0\)
Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)
a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)
b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)
Tính giá trị của các biểu thức sau:
a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)
b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)
c) \(P = 1 + {\tan ^2}{60^o}\)
d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)
a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)
Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)
Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)
b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)
Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)
Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)
c) \(P = 1 + {\tan ^2}{60^o}\)
Ta có: \(\tan {60^o} = \sqrt 3 \)
Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)
d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)
Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)
Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)
Tính giá trị của biểu thức:
a,A= \(sin^215^0+sin^240^0+sin^260^0+sin^275^0+sin^250^0+sin^230^0\)
b, B=\(tan5^0tan10^0....tan85^0\)
c, C=\(cos^215^0-cos^225^0+cos^235^0-cos^245^0-cos^265^0+cos^275^0\)
LÀM ƠN GIÚP MÌNH NHÉ, MAI NỘP RÙI. PLEASE!!!!!!
Có
A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)
\(=\left(sin^215^o+cos^215^o\right)+...\)
\(=1\cdot3=3\)
Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ
Nói chung nếu: a+b=90 độ
thì: \(sin^2a+sin^2b=1\)
b) thì áp dụng nếu a+b=90 độ:
\(tana=cotb\) và ngược lại
Mà \(tana\cdot cota=1\)
Nói chung là công thức......
bài 1: tính giá trị của các biểu thức sau
a) \(\cot^215^o+\cos^225^o+\cos^235^o+\cos^245^o+\cos^255^o+\cos^265^o+\cos^275^o\)
b) \(\sin^210^o-\sin^220^o-\sin^230^o-sin^240^o-\sin^250^o-\sin^270^o+\sin^280^o\)
c) \(\sin15^o+\sin75^o-\cos15^o-\cos75^o+\sin30^o\)
giải giúp mik vs mấy bạn~ mjk cần gấp lắm
câu a "cot" chuyển thành "cos" giùm mjk nha
https://hoc24.vn/hoi-dap/question/647714.html
a) ta có : cos215+cos225+cos235+cos245+cos255+cos265+cos275cos215+cos225+cos235+cos245+cos255+cos265+cos275
=cos215+cos275+cos225+cos265+cos235+cos255+cos245=cos215+cos275+cos225+cos265+cos235+cos255+cos245 =cos215+cos2(90−15)+cos225+cos2(90−25)+cos235+cos2(90−35)+cos245=cos215+cos2(90−15)+cos225+cos2(90−25)+cos235+cos2(90−35)+cos245 =cos215+sin215+cos225+sin225+cos235+sin235+cos245=cos215+sin215+cos225+sin225+cos235+sin235+cos245
Rút gọn biểu thức:
\(A=\sin^210+\sin^220+\sin^230+\sin^280+\sin^270+\sin^260\)
\(B=\left(1+\tan^2\alpha\right)\left(1-\sin^2\alpha\right)+\left(1+\cot^2\alpha\right)\left(1-\cos^2\alpha\right)\)
\(A=sin^210+sin^220+sin^230+sin^280+sin^270+sin^260=sin^210+sin^220+sin^230+cos^210+cos^220+cos^230=1+1+1=3\)\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)+\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)=\dfrac{1}{cos^2\alpha}.cos^2\alpha+\dfrac{1}{sin^2\alpha}.sin^2\alpha=1+1=2\)