Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toru
Xem chi tiết

ĐKXĐ: \(z\ne2\)

\(\left(\dfrac{z^2+2z+4}{z-2}\right)^2+7+\dfrac{\left(z-2\right)\left(z^2+2x+4\right)}{\left(z-2\right)^2}=0\)

\(\Leftrightarrow\left(\dfrac{z^2+2z+4}{z-2}\right)^2+\dfrac{z^2-2z+4}{z-2}+7=0\)

Đặt \(\dfrac{z^2+2z+4}{z-2}=x\)

\(\Rightarrow x^2+x+7=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}=0\)

Pt đã cho vô nghiệm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 3:25

Phạm Thị Thiên Trang
Xem chi tiết
Cần Một Người Quan Tâm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2019 lúc 5:52

Chọn D.

Phương trình đã cho tương đương với phương trình

z( z + 2) ( z - 1) ( z + 3)

Hay ( z2 + 2z) ( z2 + 2z - 3) = 10

Đặt t = z2 + 2z. Khi đó phương trình trở thành: t2 - 2t – 10 = 0.

Vậy phương trình có các nghiệm: 

Tổng tất cả  các phần thực của các nghiệm phương trình đã cho là:

-1+ ( -1) + (-1) + ( -1) = -4.

Rosie
Xem chi tiết
Rin Huỳnh
28 tháng 1 2023 lúc 12:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 1 2018 lúc 14:31



Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2017 lúc 17:11

Chọn C.

Đặt t = z2 + z; Phương trình đã cho trở thành

Với 

Với 

Vậy phương trình đã cho có 4 nghiệm.

vvvvvvvv
Xem chi tiết
HT2k02
6 tháng 4 2021 lúc 21:58

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

ngọc linh
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 23:27

Lời giải:
ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$

PT \(\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]+[(z-2)-6\sqrt{z-2}+9]=0\)

\(\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2+(\sqrt{z-2}-3)^2=0\)

Vì \((\sqrt{x}-1)^2, (\sqrt{y-1}-2)^2, (\sqrt{z-2}-3)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\((\sqrt{x}-1)^2=(\sqrt{y-1}-2)^2=(\sqrt{z-2}-3)^2=0\)

$\Leftrightarrow x=1; y=5; z=11$