giải bất phương trình: \(\sqrt{3x-2}+3x^2+9>20x+\sqrt{7-x}\)
- Giải phương trình ạ
\(\sqrt{4+20x}=3x+2\)
\( \sqrt{ 2x+5 } = x+1 \)
\(\sqrt{4+20x}=3x+2\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{8}{9}\left(N\right)\end{matrix}\right.\\ \sqrt{2x+5}=x+1\left(x\ge-\dfrac{5}{2}\right)\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(N\right)\\x=-2\left(N\right)\end{matrix}\right.\)
\(\sqrt{4+20x}=3x+2\\ \Leftrightarrow4+20x=\left(3x+2\right)^2\\ \Leftrightarrow4+20x=9x^2+12x+4\\ \Leftrightarrow-4-20x+9x^2+12x+4=0\\ \Leftrightarrow9x^2-8x=0\\ \Leftrightarrow x\left(9x-8\right)=0\\ \Leftrightarrow x=0hoặcx=\dfrac{8}{9}\)
\(\sqrt{2x+5}=x+1\\ \Leftrightarrow2x+5=\left(x+1\right)^2\\ \Leftrightarrow2x+5=x^2+2x+1\\ \Leftrightarrow x^2+2x+1-2x-5=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow x^2=4\\ \Leftrightarrow x=\pm2\)
a: Ta có: \(\sqrt{20x+4}=3x+2\)
\(\Leftrightarrow9x^2+12x+4=20x+4\)
\(\Leftrightarrow9x^2-8x=0\)
\(\Leftrightarrow x\left(9x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{8}{9}\left(nhận\right)\end{matrix}\right.\)
Giải bất phương trình \(\sqrt{5x-1}+\sqrt[3]{9-x}\ge2x^2+3x-1\)
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)
\(\Leftrightarrow x-1\le0\)
\(\Rightarrow\dfrac{1}{5}\le x\le1\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Giải bất phương trình:
\(\sqrt{3x^2-7x+3}+\sqrt{x^2-3x+4}>\sqrt{x^2-2}+\sqrt{3x^2-5x-1}\)
Giải phương trình (sử dụng bất đẳng thức):
\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)
\(\sqrt{3x^2-12x+21}=\sqrt{3x^2-12x+12+9}=\sqrt{3\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5x^2-20x+20+4}=\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(-2x^2+8x-3=-2x+8x-8+5=-2\left(x-2\right)^2+5\le5\)
\(VP\ge3+2=5,VT\le5\)
Suy ra \(VP=VT=5\)
Suy ra nghiệm của phương trình đạt tại \(x-2=0\Leftrightarrow x=2\).
câu trả lời là : ko bt =))
giải pt:
a. \(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
b. \(\sqrt{3x-5}+\sqrt{7-3x}=5x^2-20x+22\)
c. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
giải bất phương trình sau :\(\dfrac{2x^3+3x}{7-2x}>\sqrt{2-x}\)
ĐKXĐ: \(x\le2\)
Xét trên miền xác định:
\(\Leftrightarrow\dfrac{2x^3+3x}{7-2x}-1+1-\sqrt{2-x}>0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(2x^2+2x+7\right)}{7-2x}+\dfrac{x-1}{1+\sqrt{2-x}}>0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{2x^2+2x+7}{7-2x}+\dfrac{1}{1+\sqrt{2-x}}\right)>0\)
\(\Leftrightarrow1< x\le2\)
giải bất phương trình
\(\dfrac{\sqrt{x^2+1}-\sqrt{x+1}}{x^2+\sqrt{3x-6}}\ge0\)
ĐK: \(x\ge2\)
\(\dfrac{\sqrt{x^2+1}-\sqrt{x+1}}{x^2+\sqrt{3x-6}}\ge0\)
\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+1}\ge0\)
\(\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x+1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge1\end{matrix}\right.\)
Kết hợp điều kiện xác định ta được \(x\ge2\)
giải bất phương trình : \(\sqrt{3x^2+5x+7}-\sqrt{3x^2+5x+2}\)>=1