\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+13\right)^2}\)
Rút gọn
1) \(E=\left(\sqrt{11}-3\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{54}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)
2) \(F=\frac{\left(\sqrt{3-\sqrt{5}}-1\right)\left(\sqrt{3-\sqrt{5}}\left(3-\sqrt{5}\right)+1\right)}{4-\sqrt{5}-\sqrt{3-\sqrt{5}}}+\sqrt{5}\)
Rút gọn:
\(\dfrac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}\)
\(\dfrac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}=\dfrac{\sqrt{5+2\sqrt{5}+1}\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3-\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}}=\dfrac{\sqrt{2}\left(\sqrt{5}+1\right)^2\left(\sqrt{3}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3-\sqrt{3-2\sqrt{3}+1}}}=\dfrac{\left(6+2\sqrt{5}\right)\left(\sqrt{3}+1\right)\left(3-\sqrt{5}\right)}{\sqrt{2}.\sqrt{4-\sqrt{3}}}=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{\sqrt{4-\sqrt{3}}}\)
\(=\dfrac{4\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{4-\sqrt{3}}}\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Rút gọn :
a) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
b) \(\sqrt{\left(\sqrt{5}-1\right).\sqrt{13-\sqrt{69-28\sqrt{5}}}}\)
c) \(\dfrac{\sqrt{3+\sqrt{5}}.\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}\)
\(a.\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}=2\sqrt{x}\)
\(b.\sqrt{\left(\sqrt{5}-1\right)\sqrt{13-\sqrt{49-2.7.2\sqrt{5}+20}}}=\sqrt{\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}+1}}=\sqrt{\left(\sqrt{5}-1\right)\left(\sqrt{5+1}\right)}=\sqrt{5}-1\)
\(c.\dfrac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}=\dfrac{\sqrt{2}.\sqrt{5+2\sqrt{5}+1}\left(\sqrt{3}+1\right)\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}}=\dfrac{\sqrt{2}\left(\sqrt{5}+1\right)^2\left(\sqrt{3}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}=\dfrac{2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{\sqrt{3+2\sqrt{3}+1}}=2\left(9-5\right)=2.4=8\)
Câu a
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\sqrt{x}+\sqrt{y}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x^2y}+\sqrt{xy^2}}{\sqrt{xy}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\\ =\dfrac{2x\sqrt{y}}{\sqrt{xy}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
a)\(\left(\sqrt{5}+2\right).\left(17-4\sqrt{9+4\sqrt{5}}\right)?\)
b)\(\left(\sqrt{3-1}\right).\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
c) \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}\)
d) \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
Thực hiện phép tính:
A=\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right).\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right).\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
B=\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
C=\(\left(\sqrt{3}-\sqrt{2}\right).\sqrt{5-2\sqrt{6}}\)
D=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
Bạn nhóm hai thừa số đầu, hai thừa số cuối, sau đó áp dụng hằng đẳng thức số 3 ta dc
A=[(√2+√3)^2-5][5-(√2-√3)^2]
= Bạn khai triển các bình phương ra, thu gọn, kết quả là 24
Bạn tách các bt trong ngoặc ra về các hằng đẳng thức số1, 2 như này
8-2√15= 3-2.√3.√5+5=
(√3+√5)^2.
Nhưng căn tiếp theo phải là 21-4√5 thì mới ra được là (2√5-1)^2
Những câu tiếp theo hoàn toàn tương tự
Tính
A = \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
B = \(\sqrt{\left(4-\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
C = \(\sqrt{\left(1-\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)
\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)
\(C=\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)
\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)
\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}\)
C=\(\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)
1)\(\sqrt{x+3}\) > 2
2) \(\dfrac{1+\sqrt{x}}{\sqrt{x}-2}\)<1
3) \(\left(\sqrt{x}-1\right)\).\(\left(\sqrt{x}-3\right)\)-5=\(\sqrt{x}\) \(\left(\sqrt{x}+2\right)-5\)
tìm x mn giúp mình nha plsss
1: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{x+3}>2\)
=>x+3>4
=>x>4-3=1
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
3: ĐKXĐ: x>=0
\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)
=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)
=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)
=>\(-6\sqrt{x}+3=0\)
=>\(-6\sqrt{x}=-3\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
Tính:
1.\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\) 4.\(\sqrt{\left(\sqrt{3}\right)^2+2.\left(\sqrt{3}\right).\left(1\right)+\left(1\right)^2}\)
2.\(\sqrt{\left(\sqrt{5}-\sqrt{6}\right)^2}\) 5.\(\sqrt{\left(\sqrt{5}\right)^2+2.\left(\sqrt{5}\right).\left(\sqrt{3}\right)+\left(\sqrt{3}\right)^2}\)
3.\(\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\) 6.\(\sqrt{\left(\sqrt{6}\right)^2-2.\left(\sqrt{6}\right).\left(\sqrt{5}\right)+\left(\sqrt{5}\right)^2}\)