√(3-√5) + √(√5+13) =|3-√5| +|√5+13| =3-√5+√5+13 =16
√(3-√5) + √(√5+13) =|3-√5| +|√5+13| =3-√5+√5+13 =16
Thực hiện phép tính:
A=\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right).\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right).\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
B=\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
C=\(\left(\sqrt{3}-\sqrt{2}\right).\sqrt{5-2\sqrt{6}}\)
D=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
Tính:
\(a)A=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\\ b)\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)
\(\sqrt{10}\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)}\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
Bài 1: Rút gọn biểu thức
a) \(A=\sqrt{26+15\sqrt{3}}\)
b) \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
c) \(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
d) \(D=\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
e) \(E=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\)
f) \(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
g) \(G=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
h) \(H=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)