Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Tran Tieu Doan
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
3 tháng 10 2020 lúc 6:13

Gọi O là tâm bình hành

\(\overrightarrow{MA}+2\overrightarrow{MB}+2\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}\Leftrightarrow6\overrightarrow{MO}+\overrightarrow{OA}+2\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

Dễ dàng nhìn ra trong hình bình hành ABCD tâm O thì: \(\hept{\begin{cases}\overrightarrow{OA}+\overrightarrow{OD}=-\frac{1}{2}\overrightarrow{AB}\\\overrightarrow{OB}+\overrightarrow{OD}=\frac{1}{2}\overrightarrow{AB}\end{cases}}\)--->thế lên trên:

\(\Rightarrow6\overrightarrow{MO}-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{0}\Leftrightarrow\overrightarrow{OM}=\frac{1}{12}\overrightarrow{AB}\)---> Dễ dàng có được M là điểm cố định (Vì các điểm O,A,B đều cố định)

Vậy điểm M được xác định bằng cách lấy đường thẳng qua O song song AB rồi trong nửa mặt phẳng bờ là BD có chứa điểm C ta lấy điểm M thuộc đường thẳng vừa dựng được sao cho đoạn OM có độ dài đúng bằng 1/12 độ dài AB.

Khách vãng lai đã xóa
HUYNHTRONGTU
3 tháng 10 2020 lúc 7:57

Gọi O là giao điểm hai đoạn thẳng AC và BD.

Dựng điểm M như sau:

Trên nửa mặt phẳng bờ AC phía B, vẽ tia Ot song song AB.

Trên tia này, Bạn lấy điểm M cách O một đoạn bằng MỘT PHẦN SÁU AB.

Đó là điểm cần tìm.

 
  

 
  
 
 

 
 

Khách vãng lai đã xóa
Nguyễn Thị Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 11 2020 lúc 16:36

Gọi E và F lần lượt là trung điểm AD và BC

\(\overrightarrow{MA}+\overrightarrow{MD}+2\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{ME}+4\overrightarrow{MF}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{ME}+2\overrightarrow{MF}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{ME}+2\overrightarrow{ME}+2\overrightarrow{EF}=0\)

\(\Leftrightarrow\overrightarrow{EM}=\frac{2}{3}\overrightarrow{EF}\)

Vậy M là điểm nằm trên EF sao cho \(\overrightarrow{EM}=\frac{2}{3}\overrightarrow{EF}\)

Khách vãng lai đã xóa
NoName
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 22:42

\(\overrightarrow{CD}+\overrightarrow{CB}=\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{CA}\)

Nguyễn Quỳnh Nhi
Xem chi tiết
Hoàng Huy
Xem chi tiết
Phạm Lan Hương
30 tháng 12 2020 lúc 14:00

Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)

giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)

câu 2 :GIẢ SỬ:

 \(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)

giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)

dang ha
Xem chi tiết
Capheny Bản Quyền
23 tháng 9 2020 lúc 20:01

\(MA+MB+MC=4MD\) 

\(MA+MC=4MD-MB\) 

\(MO+OA+MO+OC=4MO+4OD-MO-OB\) 

\(2MO=3MO+4OD+4OB-5OB\) 

\(0=MO-5OB\) 

\(5OB=MO\) 

Tới đây vẽ nha 

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:19

a) Áp dụng tính chất trọng tâm ta có: \(\overrightarrow {MA}  + \overrightarrow {MD}  + \overrightarrow {MB}  = \overrightarrow 0 \)

Suy ra M là trọng tâm của tam giác ADB

Vậy nằm trên đoạn thẳng AO sao cho \(AM = \frac{2}{3}AO\)

b) Tiếp tục áp dụng tính chất trọng tâm \(\overrightarrow {ND}  + \overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Suy ra N là trọng tâm của tam giác BCD

Vậy nằm trên đoạn thẳng OD sao cho \(ON = \frac{1}{3}OD\)

c) Áp dụng tính chất trung điểm ta có: \(\overrightarrow {PM}  + \overrightarrow {PN}  = \overrightarrow 0 \)

Suy ra là trung điểm của đoạn thẳng MN

Vậy điểm trùng với điểm O.

Kuroba Shinichi
Xem chi tiết
Đặng Ngọc Quỳnh
4 tháng 10 2020 lúc 13:39

bẹn tự vẽ hình nhé! Gọi I và J lần lượt là trung điểm của AD và BC.

Theo giả thiết: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{O}a\)

\(\Leftrightarrow2\left(\overrightarrow{OI}+\overrightarrow{OJ}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\)O,I, J thẳng hàng.(1)

\(\Delta OAD\)cân tại \(O\Rightarrow OI\perp AB\)(2)

\(\Delta OBC\)cân tại \(O\Rightarrow OJ\perp BC\)(3)

Từ 1,2,3 => AD//BC

Tương tự ta chứng minh được AB//CD

Vậy tứ giáo ABCD nội tiếp được trong đường tròn, nên tứ giác ABCD là hình chữ nhật. (đpcm)

Khách vãng lai đã xóa
Kuroba Shinichi
4 tháng 10 2020 lúc 16:28

Thanks Đặng Ngọc Quỳnh 

P/s:trc chỗ (2) hình như là OI vuông góc với AD mới đúng :P

Khách vãng lai đã xóa
Nguyễn Thảo Nguyên
Xem chi tiết