Giải phương trình
x2 -2x = 2\(\sqrt{2x-1}\)
giải phương trình: \(\sqrt{x^2-2x+5}\)=x2-2x-1
Đặt \(\sqrt{x^2-2x+5}=t>0\)
\(\Rightarrow x^2-2x=t^2-5\)
Phương trình trở thành:
\(t=t^2-5-1\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-2x+5}=3\)
\(\Rightarrow x^2-2x+5=9\)
\(\Rightarrow x^2-2x-4=0\)
\(\Rightarrow...\)
a, rút gọn biểu thức: A= \(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)
b, giải phương trình: x2-2x-4=0
c, giải hệ phương trình: \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\)
????
xin lỗi nha !
mình mới học lớp 3
mà bài này khó nắm
a.A=\(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)\(=2\sqrt{3}-3\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}\) \(=-\sqrt{3}+\sqrt{3}+1\) =1 b. \(x^2-2x-4=0\) Δ= \(\left(-2\right)^2-4\times1\times-4=20>0\) \(\Rightarrow\) phương trình có 2 nghiệm pb \(x1=\dfrac{2+\sqrt{20}}{2}=1+\sqrt{5}\) \(x2=\dfrac{2-\sqrt{20}}{2}=1-\sqrt{5}\) c. \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=5\\2x+6y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=7\\2x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Giải phương trình: x2 - 2x + 4 - 2\(\sqrt{x^3-1}\) = 0
giải phương trình \(\sqrt{2x-1}=\)x2 - x + 1
ĐK: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{2x-1}=x^2-x+1\)
\(\Leftrightarrow2x-1=x^4+x^2+1-2x^3-2x+2x^2\)
\(\Leftrightarrow x^4-2x^3+3x^2-4x+2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải phương trình: x2-2x+1=\(\sqrt{x^2+21}\)
anh chị nào giúp em với
Em cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
ô noooooooooooooooooooooo
giải phương trình
\(\sqrt{x^2-2x+4}=2x-2\)
\(\sqrt{2x^2-2x+1}=2x-1\)
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
⇔ \(x^2-2x+4
\) = \((2x - 2)^2\)
⇔ \(x^2-2x+4
\) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
⇔\(\begin{cases}
x=0\\
x-1=0
\end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}
Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4}
\)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4}
\) = 2x−2
⇔ \(x^2 - 2x + 4\)= \((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
⇔\(\left[\begin{array}{}
x=0\\
x=2
\end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}
a.
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2\ge0\\x^2-2x+4=\left(2x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=2\)
Giải phương trình
\(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
Giải phương trình : x2-2x=2√(2x-1)
\(x^2-2x=2\sqrt{2x-1}\left(đk:x\ge0,5\right)\\ \Leftrightarrow x^4-4x^3+4x^2=4\left(2x-1\right)\\ \Leftrightarrow x^4-4x^3+4x^2=8x-4\\ \Leftrightarrow x^4-4x^3+4x^2-8x+4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\left(tm\right)\\x=2-\sqrt{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{2-\sqrt{2};2+\sqrt{2}\right\}\)
giải phương trình: x2 - 2x = 2√2x-1
\(x^2-2x=2\sqrt{2x-1}\) \(\left(Đk:x\ge\dfrac{1}{2}\right)\)
\(x^2=2x+2\sqrt{2x-1}\)
\(x^2=2x-1+2\sqrt{2x-1}+1\)
\(x^2=\left(\sqrt{2x-1}+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2x-1}+1\\x=-\sqrt{2x-1}-1\end{matrix}\right.\)
+) \(x=\sqrt{2x-1}+1\)
\(x-1=\sqrt{2x-1}\left(x\ge1\right)\)
\(x^2-2x+1=2x-1\)
\(x^2-4x+2=0\)
\(\left(x-2\right)^2=2\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\left(TM\right)\\x=2-\sqrt{2}\left(L\right)\end{matrix}\right.\)
+) \(x=-\sqrt{2x-1}-1\)
VP\(\le-1\) mà \(VT\ge\dfrac{1}{2}\)
=> phương trình vô nghiệm
Vậy \(S=\left\{2+\sqrt{2}\right\}\)
Giải phương trình:
(x2-1)3+(x2+2)3+(2x-1)3+(3x+3)(2x-1)(1-x)(x2+2)=0
Lời giải:
PT $\Leftrightarrow (x^2-1)^3+(x^2+2)^3+(2x-1)^3-3(x^2-1)(x^2+2)(2x-1)=0$
Đặt $x^2-1=a; x^2+2=b; 2x-1=c$ thì pt trở thành:
$a^3+b^3+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$
Nếu $a+b+c=0$
$\Leftrightarrow x^2-1+x^2+2+2x-1=0$
$\Leftrightarrow 2x^2+2x=0$
$\Rightarrow x=0$ hoặc $x=-1$
Nếu $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$ (dễ CM)
$\Leftrightarrow a=b=c$
$\Leftrightarrow x^2-1=x^2+2=2x-1$ (vô lý)
Vậy..........