Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trà
Xem chi tiết
Khánh An Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 8:36

a: \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\sqrt{15}x-2\sqrt{3}\cdot y=2\sqrt{15}\left(\sqrt{3}-1\right)\\2\sqrt{15}x+15y=21\sqrt{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2\sqrt{3}y-15y=2\sqrt{45}-2\sqrt{15}-21\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-2\sqrt{3}-15\right)=-15\sqrt{5}-2\sqrt{15}\\2\sqrt{3}\cdot x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{15\sqrt{5}+2\sqrt{15}}{2\sqrt{3}+15}=\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\2\sqrt{3}x=21-3\sqrt{5}\cdot\sqrt{5}=21-15=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\x=\dfrac{6}{2\sqrt{3}}=\sqrt{3}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8,5x-10y+4,2x+10y=19,8\\2,1x+5y=0,4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12,7x=19,8\\2,1x+5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\5y=0,4-2,1x=-\dfrac{365}{127}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)

Đào Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 20:51

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{x+y-4}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+y=a^2\\x+y=b^2+4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2-b^2-4\\y=-a^2+2b^2+8\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}a+b=19\\a-3\left(a^2-b^2-4\right)+5\left(-a^2+2b^2+8\right)=-8\end{matrix}\right.\)

Tới đây chắc là đơn giản rồi đúng không? Thế trên xuống dưới là xong thôi

Nguyễn Thị Thanh Trúc
Xem chi tiết
Tâm Cao
Xem chi tiết
vvvvvvvv
Xem chi tiết
HT2k02
6 tháng 4 2021 lúc 21:58

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

Tam Akm
Xem chi tiết
Lalisa Manobal
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 18:42

ĐKXĐ: ...

\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)

\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)

\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)

Thế xuống pt dưới:

\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)

\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)

Xét (1) với \(x\ge\dfrac{3}{2}\):

\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)

\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\) 

\(\Rightarrow\left(1\right)\) vô nghiệm

Quỳnh Nguyễn Thị Ngọc
Xem chi tiết