Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Việt Khoa
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2020 lúc 19:03

a.

\(\Leftrightarrow\left\{{}\begin{matrix}2xy+2y^2=2+2y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)

\(\Rightarrow x^2+4xy+4y^2=x+2y+6\)

\(\Leftrightarrow\left(x+2y\right)^2-\left(x+2y\right)-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=3\\x+2y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3-2y\\x=-2-2y\end{matrix}\right.\)

Thế vào pt đầu...

b.

Từ pt đầu:

\(\left(x^2-xy-2y^2\right)-\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1-y\\x=2y\end{matrix}\right.\)

Thế xuống pt dưới...

Nguyễn Đức Anh
Xem chi tiết
Ichigo Hollow
Xem chi tiết
Nguyễn Huy Thắng
20 tháng 3 2019 lúc 22:43

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

Nguyễn Huy Thắng
20 tháng 3 2019 lúc 22:48

caau a) binh phuong len ra no x=y tuong tu

Nguyễn Thành Trương
20 tháng 3 2019 lúc 14:03

c)

ĐK $y \geqslant 0$

Hệ đã cho tương đương với

$\left\{\begin{matrix} 2x^2+2xy+2x+6=0\\ (x+1)^2+3(y+1)+2xy=2\sqrt{y(x^2+2)} \end{matrix}\right.$

Trừ từng vế $2$ phương trình ta được

$x^2+2+2\sqrt{y(x^2+2)}-3y=0$

$\Leftrightarrow (\sqrt{x^2+2}-\sqrt{y})(\sqrt{x^2+2}+3\sqrt{y})=0$

$\Leftrightarrow x^2+2=y$

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 16:31

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

Nguyễn Việt Lâm
23 tháng 10 2021 lúc 16:41

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:43

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:59

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Kimian Hajan Ruventaren
29 tháng 7 2021 lúc 21:39

ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 22:06

b.

Với \(xy=0\) không là nghiệm

Với \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)

\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)

\(\Leftrightarrow5-x^2=5x-2x^2\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 22:06

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)

\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)

Thế vào 1 trong 2 pt ban đầu...

Nguyễn Hồng Nhung
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
Shinichi Kudo
16 tháng 6 2023 lúc 20:51

loading...  

Shinichi Kudo
16 tháng 6 2023 lúc 21:06

loading...  

Nguyễn Thị Bình Yên
Xem chi tiết
Phan Trọng Đĩnh
15 tháng 1 2020 lúc 22:19

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường

Khách vãng lai đã xóa