\(\cos3x=2\sin\left(\frac{3\pi}{2}+x\right)\)
giúp mình vs ạ !
chứng minh các đẳng thức sau
a) \(\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\frac{1}{4}\cos3x\)
b) \(\sin5x-2\sin x\left(\cos4x+\cos2x\right)=\sin x\)
\(cosx.cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)=\frac{1}{2}cosx\left(cos\frac{2\pi}{3}+cos2x\right)=-\frac{1}{4}cosx+\frac{1}{2}cosx.cos2x\)
\(=-\frac{1}{4}cosx+\frac{1}{4}\left(cos3x+cosx\right)=\frac{1}{4}cos3x\)
\(sin5x-2sinx\left(cos4x+cos2x\right)=sinx.cos4x+cosx.sin4x-2sinx.cos4x-2sinx.cos2x\)
\(=sin4x.cosx-cos4x.sinx-2sinx.cos2x=sin3x-2sinx.cos2x\)
\(=sinx.cos2x+cosx.sin2x-2sinx.cos2x\)
\(=sin2x.cosx-cos2x.sinx=sinx\)
\(\sin3x+\sqrt{3}\cos3x=2\sin\left(x+\frac{\pi}{3}\right)\)
\(sin3x+\sqrt{3}cos3x=2sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}sin3x+\frac{\sqrt{3}}{2}cos3x\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow x\in R\)
Giải phương trình: \(\left(\frac{\cos4x+\sin2x}{\cos3x+\sin3x}\right)^2=2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)+3\)
ĐKXĐ:...
Biến đổi đoạn trong ngoặc trước cho đỡ rối:
\(cos4x+sin2x=cos\left(3x+x\right)+sin\left(3x-x\right)\)
\(=cos3x.cosx-sin3x.sinx+sin3x.cosx-cos3x.sinx\)
\(=cosx\left(cos3x+sin3x\right)-sinx\left(cos3x+sin3x\right)\)
\(=\left(cosx-sinx\right)\left(cos3x+sin3x\right)\)
Thay vào phương trình:
\(\left(cosx-sinx\right)^2=2\left(sinx+cosx\right)+3\)
\(\Leftrightarrow1-2sinx.cosx=2\left(sinx+cosx\right)+3\)
Đặt \(sinx+cosx=a\Rightarrow-2sinx.cosx=1-a^2\)
\(2-a^2=2a+3\Rightarrow a=-1\Rightarrow sinx+cosx=-1\Rightarrow...\)
Câu 1: Chứng minh
\(\cos5x.\cos3x+\sin7x.\sin x=\cos2x.\cos4x\)
\(\frac{1-2\sin^22x}{1-\sin4x}=\frac{1+\tan2x}{1-\tan2x}\)
Câu 2:Rút gọn biểu thức
\(2\cos x-3\cos\left(\pi-x\right)+5\sin\left(\frac{7\pi}{x}-x\right)+cot\left(\frac{3\pi}{2}-x\right)\)
\(cos5x.cos3x+sin7x.sinx=\frac{1}{2}cos8x+\frac{1}{2}cos2x-\frac{1}{2}cos8x+\frac{1}{2}cos6x\)
\(=\frac{1}{2}\left(cos6x+cos2x\right)=cos4x.cos2x\)
\(\frac{1-2sin^22x}{1-sin4x}=\frac{cos^22x-sin^22x}{cos^22x+sin^22x-2sin2x.cos2x}\)
\(=\frac{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}{\left(cos2x-sin2x\right)^2}=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{\frac{cos2x}{cos2x}+\frac{sin2x}{cos2x}}{\frac{cos2x}{cos2x}-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)
\(2cosx-3cos\left(\pi-x\right)+5sin\left(4\pi-\frac{\pi}{2}-x\right)+cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(=2cosx+3cosx-5sin\left(\frac{\pi}{2}+x\right)+cot\left(\frac{\pi}{2}-x\right)\)
\(=5cosx-5cosx+tanx=tanx\)
Rút gọn: \(C=sin^2x+sin^2\left(\frac{\Pi}{3}-x\right)+sinx.sin\left(\frac{\Pi}{3}-x\right)\)
a/c giúp e vs ạ. e đang cần gấp ạ.
Giải phương trình:
a) \(sin\left(\frac{\pi}{6}cosx+\frac{\pi}{3}\right)=0\)
b) \(cos\left(\pi cos3x\right)=0\)
c) \(tan\left(\frac{\pi}{3}sin\pi x\right)=\frac{1}{\sqrt{3}}\)
a/
\(\Leftrightarrow\frac{\pi}{6}cosx+\frac{\pi}{3}=k\pi\)
\(\Leftrightarrow cosx=-2+6k\)
Do \(-1\le cosx\le1\Rightarrow-1\le-2+6k\le1\)
\(\Rightarrow\frac{1}{6}\le k\le\frac{1}{2}\Rightarrow\) ko tồn tại k thỏa mãn
Vậy pt vô nghiệm
b.
\(\Leftrightarrow\pi cos3x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow cos3x=\frac{1}{2}+k\)
\(-1\le\frac{1}{2}+k\le1\Rightarrow k=\left\{-1;0\right\}\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c. ĐKXĐ: ...
\(\Leftrightarrow\frac{\pi}{3}sin\pi x=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow sin\pi x=\frac{1}{2}+3k\)
\(-1\le\frac{1}{2}+3k\le1\Rightarrow k=0\)
\(\Rightarrow sin\pi x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\pi x=\frac{\pi}{6}+k2\pi\\\pi x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}+2k\\x=\frac{5}{6}+2k\end{matrix}\right.\)
1)Cos^2(x-pi/5)=sin^2(2x+4pi/5) 2)sin3x=căn2.cos(x-pi/5)+cos3x Giúp e các bước giải 2 pt này vs ạ
1) \(\frac{1}{\cos x}+\frac{1}{\sin2x}=\frac{2}{\sin4x}\)
2) \(\cos3x\cdot\tan5x=\sin7x\)
3) \(\tan5x\cdot\tan2x=1\)
4) \(4\cos x-2\cos2x-\cos4x=1\)
5) \(\sin\left(2x+\frac{5\pi}{2}\right)-2\cos\left(x-\frac{7\pi}{2}\right)=1+2\sin x\)
6) \(\sin^22x-\cos^28x=\sin\left(\frac{17\pi}{2}+10x\right)\)
7) \(8\cos x=\frac{\sqrt{3}}{\sin x}+\frac{1}{\cos x}\)
1.
DKXĐ: \(sin4x\ne0\)
\(\Leftrightarrow\frac{4sinx.cos2x}{sin4x}+\frac{2cos2x}{sin4x}=\frac{2}{sin4x}\)
\(\Leftrightarrow2sinx.cos2x+cos2x=1\)
\(\Leftrightarrow2sinx\left(1-2sin^2x\right)+1-2sin^2x=1\)
\(\Leftrightarrow sinx\left(1-2sin^2x-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(l\right)\\-2sin^2x-sinx+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
2.
ĐKXĐ: ...
\(\Leftrightarrow\frac{cos3x.sin5x}{cos5x}=sin7x\)
\(\Leftrightarrow cos3x.sin5x=sin7x.cos5x\)
\(\Leftrightarrow sin8x+sin2x=sin12x+sin2x\)
\(\Leftrightarrow sin8x=sin12x\)
\(\Leftrightarrow\left[{}\begin{matrix}12x=8x+k2\pi\\12x=\pi-8x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{20}+\frac{k\pi}{10}\end{matrix}\right.\)
Ở nghiệm đầu tiên loại các giá trị k lẻ do đó nghiệm của pt là:
\(\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{20}+\frac{k\pi}{10}\end{matrix}\right.\)
3.
ĐKXĐ: ...
\(\Leftrightarrow tan5x=\frac{1}{tan2x}\)
\(\Leftrightarrow tan5x=cot2x\)
\(\Leftrightarrow tan5x=tan\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow5x=\frac{\pi}{2}-2x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{14}+\frac{k\pi}{7}\)
giải phương trình: \(\frac{\cos x}{\cos3x}-\frac{\cos5x}{\cos x}+8\sin^2\left(2x+\frac{11\pi}{2}\right)=4\left(1+\cos2x\right)\)
ĐKXĐ: \(x\ne\frac{\pi}{6}+\frac{k\pi}{3}\)
\(\Leftrightarrow\frac{cos^2x-cos3x.cos5x}{cos3x.cosx}-4\left[1-2sin^2\left(2x+\frac{11\pi}{2}\right)\right]-4cos2x=0\)
\(\Leftrightarrow\frac{2cos^2x-cos2x-cos8x}{cos4x+cos2x}-4cos\left(4x+11\pi\right)-4cos2x=0\)
\(\Leftrightarrow\frac{1-cos8x}{cos4x+cos2x}+4cos4x-4cos2x=0\)
\(\Leftrightarrow1-cos8x+4\left(cos4x-cos2x\right)\left(cos4x+cos2x\right)=0\)
\(\Leftrightarrow1-cos8x+4cos^24x-4cos^22x=0\)
\(\Leftrightarrow1-\left(2cos^24x-1\right)+4cos^24x-2\left(1+cos4x\right)=0\)
\(\Leftrightarrow cos^24x-cos4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x=1\end{matrix}\right.\) \(\Leftrightarrow...\)