Tìm x thuộc N , biết:
a) 2x + 2x+3 =144
b) (4x -1)2 =25 x 9
Tìm số tự nhiên x biết:
a) 25 + 7x = 144
b) 33 - 12x = 9
c) 128 - 3(x + 4) = 23
d) 71 + (726 - 3x).5 = 2246
e) 720 : [41 - (2x + 5)] = 40
f) (10 - 4x) + 120 : 8 = 16 + 1
g) x + 9x + 7x + 5x = 2244
h) (x + 1) + (x + 2) + (x + 3) +...+ (x + 100) = 5750
i) 1 + 2 + 3 +...+ x = 500500
j) 51 + 52 + 53 +...+ x = 18825
a: Ta có: \(7x+25=144\)
\(\Leftrightarrow7x=119\)
hay x=17
b: Ta có: \(33-12x=9\)
\(\Leftrightarrow12x=24\)
hay x=2
c: Ta có: \(128-3\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=105\)
\(\Leftrightarrow x+4=35\)
hay x=31
d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)
\(\Leftrightarrow5\left(726-3x\right)=2175\)
\(\Leftrightarrow726-3x=435\)
\(\Leftrightarrow3x=291\)
hay x=97
e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)
\(\Leftrightarrow41-\left(2x+5\right)=18\)
\(\Leftrightarrow2x+5=23\)
\(\Leftrightarrow2x=18\)
hay x=9
f: Ta có: \(10-4x+120:8=16+1\)
\(\Leftrightarrow4x=17-25=-8\)
hay x=-2
g: Ta có: \(x+9x+7x+5x=2244\)
\(\Leftrightarrow22x=2244\)
hay x=102
h: Ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=700\)
hay x=7
Tìm x biết:
a, 16x² – 9(x + 1)²= 0
b, x2 (x – 1) – 4x2 + 8x – 4 = 0
c, x(2x – 3) – 2(3 – 2x) = 0
d, (x – 3)(x² + 3x + 9) – x(x + 2)(x – 2) = 1
e, 4x² + 4x – 6 = 2
f, 2x² + 7x + 3 = 0
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Bài 2: (2 điểm) Tìm x, biết:
a) (3x + 4)2 – (3x – 1)(3x + 1) = 49
b) x2 – 4x + 4 = 9(x – 2)
c) x2 – 25 = 3x - 15
d) (x – 1)3 + 3(x + 1)2 = (x2 – 2x + 4)(x + 2)
a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
b) \(\Rightarrow x^2-13x+22=0\)
\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)
c) \(\Rightarrow x^2-3x-10=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Tìm STN x, biết:
a) (4x - 1)2 - 9 = 16
b) 2x + 2x + 3 = 144
c) 32x + 3 = 9x + 3
\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)
Tìm x, biết:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
b) \(\sqrt{25-20x+4x^2}+2x=5\)
a,\(Đkxđ:x\ge3\)
Ta có:
\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow|x-3|=3-x\)
\(\Leftrightarrow x-3=\left[{}\begin{matrix}x-3\\3-x\end{matrix}\right.\)
\(TH1:x-3=x-3\Leftrightarrow0x=0\)
\(\Rightarrow\)\(x\in R\) và \(x\ge3\)
\(TH2:x-3=3-x\Leftrightarrow2x=6\Leftrightarrow x=3\)( ko thỏa mãn điều kiện)
vậy \(\left\{x\in R/x\ge3\right\}\)
b, \(Đkxđ:x\le\dfrac{5}{2}\)
Ta có:
\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in R\\x=\dfrac{5}{2}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(\left\{x\in R/x\le\dfrac{5}{2}\right\}\)
bài 6:Tìm x, biết:A,1/4x-1/3=-5/9;B,3,5-Ix-1/2I=0,75;C,x-1/x-5=6/7;D,(x-4)mũ 2=25;E,2 mũ x+2 mũ x-4=272;F,(x+1/2)(2/3-2x)=0
Tìm x, biết:
a) \(\sqrt{x^2-2x+1}=2\)
b)\(\sqrt{x^2-1}=x\)
c) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
d) \(x-5\sqrt{x-2}=-2\)
e) \(2x-3\sqrt{2x-1}-5=0\)
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
a.
$\sqrt{x^2-2x+1}=2$
$\Leftrightarrow \sqrt{(x-1)^2}=2$
$\Leftrightarrow |x-1|=2$
$\Rightarrow x-1=\pm 2$
$\Leftrightarrow x=3$ hoặc $x=-1$ (đều thỏa mãn)
b. ĐKXĐ: $x\geq 1$ hoặc $x\leq -1$
PT \(\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2-1=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 1=0\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm
c. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)
Tìm x, biết:
a) 16x2-(4x-5)2=15 b) (2x+1)(1-2x)+(1-2x)2=18
c) (x-5)2-x(x-4)=9 d) (x-5)2+(x-4)(1-x)=0
a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 40x = 15 <=> x = 3/8
a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 5(8x-5) = 15
<=> 40x = 40 <=> x = 1
Cái này mới chuẩn
b) (2x+1)(1-2x)+(1-2x)2=18 <=> 1 - 4x2 + 4x2 - 4x + 1 = 18
<=> -4x = 16 <=> x = -4
Tìm x biết:
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
d) x2 - 4x + 5 = 0.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
Tìm x, y biết:a, \(\left[\dfrac{1}{2}x^2\left(2x-1\right)^m-\dfrac{1}{2}x^{m+2}\right]:\dfrac{1}{2}x^2=0\) (m thuộc N)
b, \(\left(2x-3\right)^6=\left(2x-3\right)^8\)
c, \(4x^2-4x+y^2-\dfrac{2}{3}y+\dfrac{10}{9}=0\)
a: \(\left[\dfrac{1}{2}x^2\left(2x-1\right)^m-\dfrac{1}{2}x^{m+2}\right]:\dfrac{1}{2}x^2=0\)
\(\Leftrightarrow\left(2x-1\right)^m-x^m=0\)
\(\Leftrightarrow\left(2x-1\right)^m=x^m\)
=>2x-1=x
=>x=1
b: \(\left(2x-3\right)^8=\left(2x-3\right)^6\)
\(\Leftrightarrow\left(2x-3\right)^6\cdot\left(2x-4\right)\left(2x-2\right)=0\)
hay \(x\in\left\{\dfrac{3}{2};2;1\right\}\)
c: \(\Leftrightarrow4x^2-4x+1+y^2-\dfrac{2}{3}y+\dfrac{1}{9}+\dfrac{6}{9}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-\dfrac{1}{3}\right)^2+\dfrac{6}{9}=0\)(vô lý)