Tìm gtln, gtnn của hs:
a) y=√(5-2sinx.cosx)
b) y=cos^2x-3cosx+4
8. GTLN và GTNN của hs y = cos^2x + 2cosx là?
10. GTLN của HS y = 1 - 2cosx - cos^2x là?
14. HS y = |sinx| là hs tuần hoàn vs chu kì là bn?
15. Đồ thị hàm y = tanx đi qua điểmnaof
A. M(π/4;1)
B. O(0;0)
C. N(1;π/4)
D. P( -π/4 ;1)
20. GTLN và GTNN của hs y= 2sinx(x/2+ π/7) - 3 lần lượt là?
8.
\(y=\left(cosx+1\right)^2-1\ge-1\Rightarrow y_{min}=-1\)
\(y=\left(cosx-1\right)\left(cosx+3\right)+3\le3\Rightarrow y_{max}=3\)
10.
\(y=2-\left(cosx+1\right)^2\le2\Rightarrow y_{max}=2\)
14.
Hàm tuần hoàn với chu kì \(T=\pi\)
15.
Đáp án A đúng
20.
\(-1\le sin\left(\frac{x}{2}+\frac{\pi}{7}\right)\le1\Rightarrow-5\le y\le-1\)
\(y_{max}=-1\) ; \(y_{min}=-5\)
8. GTLN và GTNN của hs y = cosx^2 + 2cos2x là?
10. GTLN của HS y = 1 -2cosx - cos^2x là?
14. HS y = |sinx| là hs tuần hoàn với chu kỳ?
8.
\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)
Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)
\(y_{min}=-2;y_{max}=3\)
10.
\(y=2-\left(cosx+1\right)^2\le2\)
\(y_{max}=2\)
14.
Hàm tuần hoàn với chu kì \(T=\pi\)
Bài 1. Tìm chu kỳ của: y = sin x - sin x/2 + sin x/3 - sin x/4 + .... + sin x/9 - sin x/10
Bài 2. Tìm GTLN, GTNN của:
a) y = 6cos2x + cos22x
b) y = ( 4sinx - 3cosx )2 - 4 ( 4sinx - 3cosx ) + 1
1.
Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)
\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)
2.
a.
\(y=cos^22x+3cos2x+3\)
\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)
\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)
b.
Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le a\le5\)
\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)
\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)
\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)
Tìm GTLN,GTNN của hàm số:
a, \(y=3cosx-1\)
b, \(y=5+2sinx\)
c,\(y=\sqrt{3+cos2x}\)
d,\(y=\sqrt{5sinx-1}+2\)
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )
Tìm GTLN và GTNN của hàm số y = √3cosx - sinx
\(y=\sqrt{3}cosx-sinx=2\left(\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\right)=2cos\left(x+\dfrac{\pi}{6}\right)\)
Vì \(cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{3}cosx-sinx\in\left[-2;2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=\pi+k2\pi\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
\(y_{max}=2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\)
Tìm GTLN, GTNN của hàm số sau
a) y = 12sinx - 5cosx
b) y = 3cosx-4sinx+5
a) Ta có : -\(\sqrt{a^2+b^2}< =asinx+bcosx< =\sqrt{a^2+b^2}\)
=> \(-\sqrt{12^2+\left(-5\right)^2}< =y< =\sqrt{12^2+\left(-5\right)^2}\)
<=> \(-\sqrt{13}< =y< =\sqrt{13}\)
Vậy min=\(-\sqrt{13}\) ,max=\(\sqrt{13}\)
b) \(-\sqrt{9+16}< =3cosx-4sinx< =\sqrt{9+16}\)
<=> -5 <=3cos x -4sinx <= 5
<=> 0<= y <= 10
Vậy min=0 max=10
Tìm GTLN GTNN của hàm số lượng giác Y= sinx/2 + 3cosx
`y=1/2 sinx +3cosx`
`-\sqrt( (1/2)^2+3^2) <= y <= \sqrt( (1/2)^2+3^2)`
`<=> -\sqrt37/2 <= y <= \sqrt37/2`
`=> y_(min) = -\sqrt37/2`
`y_(max) = \sqrt37/2`.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)