Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Nguyễn
Xem chi tiết
Bóng Đêm Hoàng
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 0:09

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{cosx}{sinx}-1=\dfrac{cos^2x-sin^2x}{1+\dfrac{sinx}{cosx}}+sin^2x-sinx.cosx\)

\(\Leftrightarrow\dfrac{cosx-sinx}{sinx}=cosx\left(cosx-sinx\right)-sinx\left(cosx-sinx\right)\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(\dfrac{1}{sinx}-cosx+sinx\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1-sinx.cosx+sin^2x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(3-sin2x-cos2x\right)=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(3-\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\right)=0\)

Sách Giáo Khoa
Xem chi tiết
Kuro Kazuya
6 tháng 4 2017 lúc 13:52

1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)

\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)

\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )

b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)

\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)

\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)

\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )

c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)

\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)

\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)

\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)

\(VT=\dfrac{1-sin2x}{1+sin2x}\)

\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)

\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)

\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )

d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)

\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )

Bình Trần Thị
Xem chi tiết
Lightning Farron
6 tháng 12 2016 lúc 23:05

mai đăng lại bài này nhé t làm cho h đi ngủ

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 17:03

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Kuramajiva
Xem chi tiết
títtt
Xem chi tiết
meme
19 tháng 8 2023 lúc 20:10

Để chứng minh các định lượng đẳng cấp, ta sẽ sử dụng các công thức định lượng giác cơ bản và các quy tắc biến đổi đẳng thức. a) Bắt đầu với phương trình ban đầu: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan( π/2 - x) Ta biết rằng: cos^2(π/2 - x) = sin^2(x) (công thức lượng giác) sin^2(π/2 - x) = cos^2(x) (công thức lượng giác) Thay vào phương trình ban đầu, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -cot(π/2 - x) * tan(π/ 2 - x) Tiếp theo, ta sẽ tính toán một số lượng giác: cot(π/2 - x) = cos(π/2 - x) / sin(π/2 - x) = sin(x) / cos(x) = tan(x) (công thức lượng giác) tan(π/2 - x) = sin(π/2 - x) / cos(π/2 - x) = cos(x) / sin(x) = 1 / tan(x) (công thức lượng giác) Thay vào phương trình, ta có: 1 - sin^2(x) / (1 - cos^2(x)) = -tan(x) * (1/tan(x)) = -1 Vì vậy, ta đã chứng minh là đúng. b) Bắt đầu với phương thức ban đầu: (1/cos^2(x) + 1) * tan(x) = tan^2(x) Tiếp tục chuyển đổi phép tính: 1/cos^2(x) + 1 = tan^2(x) / tan(x) = tan(x) Tiếp theo, ta sẽ tính toán một số giá trị lượng giác: 1/cos^2(x) = sec^2(x) (công thức) lượng giác) sec^2(x) + 1 = tan^2(x) + 1 = sin^2(x)/cos^2(x) + 1 = (sin^2(x) + cos^2(x) ))/cos^2(x) = 1/cos^2(x) Thay thế vào phương trình ban đầu, ta có: 1/cos^2(x) + 1 = 1/cos^2(x) Do đó, ta đã chứng minh được b)đúng.

myyyy
Xem chi tiết
meme
20 tháng 8 2023 lúc 10:00

a) Để chứng minh đẳng thức: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = -cot(π/2 - x) * tan(π/2 - x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: 1 - cos^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / (1 - sin^2(π/2 - x)) = sin^2(π/2 - x) / cos^2(π/2 - x) = (sin(π/2 - x) / cos(π/2 - x))^2 = (cos(x) / sin(x))^2 = cot^2(x) Bên phải: -cot(π/2 - x) * tan(π/2 - x) = -cot(π/2 - x) * (1 / tan(π/2 - x)) = -cot(π/2 - x) * (cos(π/2 - x) / sin(π/2 - x)) = -(cos(x) / sin(x)) * (sin(x) / cos(x)) = -1 Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh. b) Để chứng minh đẳng thức: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = tan^2(x) ta sẽ chứng minh cả hai phía bằng nhau. Bên trái: (1 + cos^2(x)) * (1 + cot^2(x)) * tan(x) = (1 + cos^2(x)) * (1 + (cos(x) / sin(x))^2) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (1 + cos^2(x) / sin^2(x)) * (sin(x) / cos(x)) = (1 + cos^2(x)) * (sin^2(x) + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) * 1 / sin^2(x) * (sin(x) / cos(x)) = (1 + cos^2(x)) / sin^2(x) * (sin(x) / cos(x)) = (cos^2(x) + sin^2(x)) / sin^2(x) * (sin(x) / cos(x)) = 1 / sin^2(x) * (sin(x) / cos(x)) = tan^2(x) Bên phải: tan^2(x) Vậy, cả hai phía bằng nhau và đẳng thức được chứng minh.