giải pt
tan4x - 4tan2x + 3=0
\(tan^22x-4tan2x=0\)
Phương trình này giải như nào ạ ??
ĐK: \(x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
\(tan^22x-4tan2x=0\)
\(\Leftrightarrow tan2x\left(tan2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tan2x=0\\tan2x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=arctan4+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{2}\\x=\dfrac{1}{2}arctan4+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(tan^22x-4tan2x=0\)
⇒\(tan2x\left(tan-4\right)=0\)
Giúp mình với ạaa
Giải pt:
tan4x + tanx = 2tan3x
ĐKXĐ: ...
\(\Leftrightarrow\frac{sin4x}{cos4x}+\frac{sinx}{cosx}=\frac{2sin3x}{cos3x}\Leftrightarrow\frac{sin4x.cosx+cos4x.sinx}{cosx.cos4x}=\frac{2sin3x}{cos3x}\)
\(\Leftrightarrow sin5x.cos3x=2cosx.sin3x.cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=\left(sin4x+sin2x\right)cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=sin4x.cos4x+sin2x.cos4x\)
\(\Leftrightarrow\frac{1}{2}sin8x+\frac{1}{2}sin2x=\frac{1}{2}sin8x+sin2x.cos4x\)
\(\Leftrightarrow sin2x=2sin2x.cos4x\)
\(\Leftrightarrow sin2x\left(2cos4x-1\right)=0\)
Tính tổng T tất cả các nghiệm của phương trình 4 tan 2 x + 2 1 cos 2 x - 3 = 0 trên đoạn 0 ; 3 π
A. T = π
B. T = 3 π 2
C. T = 6 π
D. T = 0
P=-2sin2x-3sinx+3 tìm GTLN
P= tan4x=?
P=tan5x=?
P=tan6x=?
P= tan4x+tan5x+tan6x=?
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Giải pt ( đưa về pt bậc 2 )
cos22x + 3sin2x - 3 = 0
\(\Leftrightarrow1-sin^22x+3sin2x-3=0\)
\(\Leftrightarrow-sin^22x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=2>1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow2x=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Giải pt ( đưa về pt bậc 2 )
cos22x - 6sinx.cosx - 3 = 0
\(\Leftrightarrow1-sin^22x-3sin2x-3=0\)
\(\Leftrightarrow sin^22x+3sin2x+2=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=-2< -1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)
ai biết cách nhẩm nghiệm phương trình bậc 3 không ạ
giải pt: 2x^3 + 7x^2 - x - 12 =0
giải pt : - x^3 + x^2 + 7x + 2 =0
mình vừa lên lớp 9 , chưa học phương trình bậc 2
a)2x3 + 7x2 - x - 12 =0
=>2x3+x2-4x+6x2+3x-12=0
=>x(2x2+x-4)+3(2x2+x-4)=0
=>(x+3)(2x2+x-4)=0
=>x+3=0 hoặc 2x2+x-4=0
Xét x+3=0 <=>x=-3
Xét 2x2+x-4=0 ta dùng delta
\(\Delta=1^2-\left(-4\left(2.4\right)\right)=33>0\)
=>pt có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{33}}{4}\)
b)- x^3 + x^2 + 7x + 2 =0
=>-x3+3x2+x-2x2+6x+2=0
=>-x(x2-3x-1)+(-2)(x2-3x-1)=0
=>-(x+2)(x2-3x-1)=0
=>-(x+2)=0 hoặc x2-3x-1=0
Xét -(x+2)=0 <=>x=-2
Xét x2-3x-1=0 theo delta ta có:
\(\Delta=\left(-3\right)^2-\left(-4\left(1.1\right)\right)=13>0\)
=>pt cũng có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\)
Y= tan4x - cot3x. Giúp với ạ
Ít nhất thì bạn cũng phải nêu yêu cầu của đề bài là làm gì chứ bạn :)
Cho pt x^2-(2m-3)x-1=0 giải pt với m =1
\(pt:x^2-\left(2m-3\right)x-1=0\)
\(Thay\cdot m=1:pt\Leftrightarrow x^2+x-1=0\\ \Delta=1^2-4.\left(-1\right).1=5>0\\ \Rightarrow\left\{{}\begin{matrix}x_1=\frac{-1+\sqrt{5}}{2}\\x_2=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\)