Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Mai Anh
Xem chi tiết
Tử Nguyệt Hàn
29 tháng 8 2021 lúc 18:26

\(\sqrt{25-x^2}\) lớn hơn hoặc= 0
=>   25-x2 lớn hơn hoặc= 0
=>       -x2 lớn hơn hoặc= -25
             x2 bé hơn hoặc =25
             x bé hơn hoặc =5
 

Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 22:12

a: ĐKXĐ: \(-5\le x\le5\)

b: ĐKXĐ: \(-4\le x\le2\)

mà x nguyên

nên \(x\in\left\{-4;-3;-2;-1;0;1;2\right\}\)

Thảo Vy
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 9 2021 lúc 11:50

Để B có nghĩa thì:

\(\left\{{}\begin{matrix}x-1\ge0\\x-1\ne0\\\sqrt{x^2}-4x+4\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne\dfrac{4}{3}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 13:37

ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)

mynameisbro
Xem chi tiết
乇尺尺のレ
11 tháng 9 2023 lúc 21:07

\(\dfrac{x-2\sqrt{x+5}}{\sqrt{2x^2+1}}\) có nghĩa khi

\(\left\{{}\begin{matrix}x+5\ge0\\2x^2+1>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\2x^2+1>0\forall x\in R\end{matrix}\right.\\ \Rightarrow x\ge-5\)

Ngân Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 8:49

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

 

 

Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:55

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

b: Để A>2 thì A-2>0

=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)

TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)

=>\(2< \sqrt{x}< \dfrac{5}{2}\)

=>4<x<25/4

c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{1;9\right\}\)

kết hợp ĐKXĐ, ta được: x=9

nam anh đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 13:03

ĐKXĐ: x-1>=0 và x+3căn x-1>0

=>x>=1 

Nguyễn Nho Bảo Trí
Xem chi tiết
Nguyễn Nho Bảo Trí
4 tháng 8 2021 lúc 20:12

Giúp mình với

Nguyễn Lê Phước Thịnh
4 tháng 8 2021 lúc 21:41

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

b) ĐKXĐ: \(x\in R\)

c) ĐKXĐ: \(x\in R\)

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 20:32

1: ĐKXĐ: 3x^2-x+2>=0

=>x thuộc R

2: ĐKXĐ: x>=0 và căn x-1<>0 và 2-căn x<>0 và 2x+1>0 và x<>0

=>x>0 và x<>1 và x<>4

nguyen thi viet vinh
Xem chi tiết
Không Tên
7 tháng 8 2018 lúc 21:28

a)  ĐKXĐ:  \(x\ge0;x\ne9\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}+\frac{5\sqrt{x}+3}{x-9}\)

  \(=\frac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

  \(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

trần vũ hoàng phúc
Xem chi tiết
Akai Haruma
20 tháng 9 2023 lúc 20:36

Lời giải:

a. Để bt có nghĩa thì $x^2-x+1\geq 0$

$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$ 

$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)

b.

Để bt có nghĩa thì $x^2-5\geq 0$

$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$

$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$

c. 

Để bt có nghĩa thì: $-x^2+2x-1\geq 0$

$\Leftrightarrow -(x^2-2x+1)\geq 0$

$\Leftrightarrow x^2-2x+1\leq 0$

$\Leftrightarrow (x-1)^2\leq 0(*)$

Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$

Nên $(*)\Leftrightarrow (x-1)^2=0$

$\Leftrightarrow x=1$

d.

Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)