\(\dfrac{x-2\sqrt{x+5}}{\sqrt{2x^2+1}}\) có nghĩa khi
\(\left\{{}\begin{matrix}x+5\ge0\\2x^2+1>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\2x^2+1>0\forall x\in R\end{matrix}\right.\\ \Rightarrow x\ge-5\)
\(\dfrac{x-2\sqrt{x+5}}{\sqrt{2x^2+1}}\) có nghĩa khi
\(\left\{{}\begin{matrix}x+5\ge0\\2x^2+1>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\2x^2+1>0\forall x\in R\end{matrix}\right.\\ \Rightarrow x\ge-5\)
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1
Tìm đk để các biểu thức sau có nghĩa:
1. \(\sqrt{3x^{2}-x+2}\)
2. \((\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{2-\sqrt{x}}): \dfrac{x}{\sqrt{2x+1}}\)
tìm giá trị của x để biểu thức có nghĩa
a,\(\sqrt{x^2-x+1}\)
b,\(\sqrt{x^2-5}\)
c,\(\sqrt{-x^2+2x-1}\)
d,\(\sqrt{\dfrac{-2}{x-1}}\)
Tìm điều kiện x để các biểu thức sau có nghĩa
\(\sqrt{x-5}\) \(\dfrac{1}{\sqrt{3x-2}}\)
tìm x để các biểu thức sau có nghĩa:
a)\(\sqrt{\left(x-2\right)}\)+\(\dfrac{1}{x-5}\) b)\(\sqrt{\left(2x-6\right)\left(7-x\right)}\) c)\(\sqrt{4x^2-25}\)
d)\(\dfrac{2}{x^2-9}\)-\(\sqrt{5-2x}\) e)\(\dfrac{x}{x^2-4}\)+\(\sqrt{x-2}\)
Cho biểu thức B =\(\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
a) Tìm điều kiện để B có nghĩa
b) Rút gọn B
c) Tính B với x =\(\dfrac{2-\sqrt{3}}{2}\)
Tìm x để biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{x}{3}}\) b) \(\sqrt{-5x}\) c) \(\sqrt{4-x}\) d) \(\sqrt{1+x^2}\)
1)
a) So sánh: - 2 và \(-\sqrt{5}\)
b) Tìm x để biểu thức sau có nghĩa: (Giải chi tiết từng bước)
\(\sqrt{\dfrac{10}{5-x}}\)
a.\(\sqrt{\dfrac{3x-2}{5}}\)
b.\(\sqrt{\dfrac{2x-3}{-3}}\)
Tìm x để các căn thức sau có nghĩa