M la trung diem OM ⊥ BC. Tai sao goc HAF = Goc MOF
Cho 2 duong tron (O) va (O') tiep xuc ngoai tai A. BC la tiep tuyen chung ngoai; B thuoc (O), C thuoc (O'). Tiep tuyen chung trong tai A cat BC o diem M, goi E la giao diem cua OM va AB, F la giao diem cua O'M va AC. CMR:
a) BC la tiep tuyen cua duong tron duong kinh OO'
b) Goc MOF= Goc MO'E
Cho 2 duong tron (O) va (O') tiep xuc ngoai tai A. BC la tiep tuyen chung ngoai; B thuoc (O), C thuoc (O'). Tiep tuyen chung ngoai trong tai A cat BC o diem M, goi E la giao diem cua OM va AB, F la giao diem cua O'M va AC. CMR:
a) BC la tiep tuyen cua duong tron duong kinh OO'
b) Goc MOF= Goc MO'E
goi tam giac ABC,truc tam H goi M la trung diem cua BC ,N la trung diem AC, duong vuong goc DC tai M la Duong vuong goc AC tai N cat nhau o O
bai 4:cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC,tren tia Bm lay diem N sao cho M la trung diem cua doan BN.CMR:
a)CN vuong goc voi AC va CN=AB
b)AN=BC va AN song song voi BC
bai 4:cho tam giac ABC ke AH vuong goc voi BC(H thuoc BC)goi M la trung diem cua canh BC.Biet goc BAH=goc HAM=goc MAC.Tinh cac goc cua tam giac ABC
bai 6:cho tam giac ABC vuong tai A,phan giac BD.Tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc voi BC
b)BIET goc ADH=120 do.Tinh goc ABD
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
Cho tam giac ABC vuong tai A co AB=3cm,AC=4cm.Goi AM la duong trung tuyen cua tam giac ABC tren tia doi cua tia AM lay diem D sao cho AM=MD
a)Tinh BC
b)C/m AB // CD
c)C/m goc BAM > goc CAM
d)Goi H la trung diem AM,tren duong thang AH lay E sao cho AH=HE , CE cat AD tai F . C/m F la trung diem CE
Cho tam giac ABC vuong tai A co AB=3cm,AC=4cm.Goi AM la duong trung tuyen cua tam giac ABC tren tia doi cua tia AM lay diem D sao cho AM=MD
a)Tinh BC
b)C/m AB // CD
c)C/m goc BAM > goc CAM
d)Goi H la trung diem AM,tren duong thang AH lay E sao cho AH=HE , CE cat AD tai F . C/m F la trung diem CE
cho goc nhon xOy. lay diem A thuoc tia Ox, lay diem B thuoc tia Oy sao cho OA=OB. Qua A ke duong thang vuong goc voi Ox cat oy tai M, qua B ke duong thang vuong goc voi Oy cat Ox tai N. goi H la giao diem cua AM va BN, I la trung diem cua MN. chung minh rang:
a) ON =OM va AN=BM
b) tia OH la tia phan giac cua goc xOy
c) ba diem O,H,I thang hang
a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:
OA = OB (GT)
góc O chung
=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)
=> OM = ON ( 2 cạnh tương ứng ) → đpcm
Ta có OA + AN = ON
OB + BM = OM
mà OM = ON ( cm trên ); OA = OB
=> AN = BM → đpcm
b) Xét ΔNOH và ΔMOH có;
ON = OM (cm trên)
OH chung
NH = MH (suy từ gt)
=> ΔNOH = ΔMOH (c.c.c)
=> góc NOH = MOH ( 2 góc tương ứng )
Do đó OH là tia pg của góc xOy → đpcm (1)
c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.
Xét ΔNAI và ΔMBI có:
góc ANI = BMI (cm trên)
AN = BM ( câu a)
góc NAI = MBI (= 90 )
=> ΔNAI = ΔMBI ( g.c.g )
=> AI = BI (2 cạnh tương ứng)
Xét ΔAOI và ΔBOI có :
AI = BI (cm trên)
góc OAI = OBI (=90)
OI chung
=> ΔAOI = ΔBOI ( c.g.c )
=> góc AOI = BOI ( 2 góc tương ứng )
Do đó OI là tia pg của xOy (2)
Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.
Chúc học tốt nguyen thi minh nguyet
a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:
OA = OB (gt)
O là góc chung
Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)
=> AMO = BNO (2 góc tương ứng)
OM = ON (2 cạnh tương ứng) (1)
Lại có: OB = OA (gt)
=> OM - OB = ON - OA
=> BM = AN (2)
(1) và (2) là đpcm
b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:
AN = BM (câu a)
ANH = BMH (câu a)
Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)
=> HN = HM (2 cạnh tương ứng)
Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)
=> NOH = MOH (2 góc tương ứng)
=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)
c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)
=> NOI = MOI (2 góc tương ứng)
=> OI là phân giác NOM
Mà OH cũng là phân giác NOM
Nên O,H,I thẳng hàng (đpcm)
cho tam giac vuong tai A va AB =6cm AC = 8cm , AH la duong cao
a, tinh BCva AH
b, ke HE vuong goc AB tai E , HF vuong goc AC tai F va goc D la trung diem cua BC .cm AD vuong goc EF
c, Goi M ,N lan luot la trung diem cua BH va CH . tu giac MNFE la hinh gi ? Vi sao ?
d, Tinh dien tich tu giac MNFE
cho tam giac abc vuong tai a,co ab=3cm,ac=4cm.
a)tinh bc va so sanhcac goc cua tam giac abc
b)ke ah vuong goc voi bc,lay d tren bc sao cho h la trung diem cua bd.cm:tam giac abd can tai a
c)tren ah lay m sao cho h la trung diem cua am.cm:tam giac abm la tam giac can
a: BC=5cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
cho tam giac abc can tai a co goc b=anpha. goi o la trung diem bc. ve (o) tiep xuc ab tai h va ac tai k. i la diem thuoc cung nho hk. tiep tuyen tai i cat ab tai m va ac tai n
a/ tinh goc mon theo anpha
b/ chung minh om^2=bm.mn
c/cho bc=2a tinh bm.cn theo a
d/ tiep tuyen mn o vi tri nao thi bm+cn nho nhat