Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
doan thai duong

bai 4:cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC,tren tia Bm lay diem N sao cho M la trung diem cua doan BN.CMR:

a)CN vuong goc voi AC va CN=AB

b)AN=BC va AN song song voi BC

bai 4:cho tam giac ABC ke AH vuong goc voi BC(H thuoc BC)goi M la trung diem cua canh BC.Biet goc BAH=goc HAM=goc MAC.Tinh cac goc cua tam giac ABC

bai 6:cho tam giac ABC vuong tai A,phan giac BD.Tren canh BC lay diem H sao cho BH=BA

a)CMR:DH vuong goc voi BC

b)BIET goc ADH=120 do.Tinh goc ABD

Vũ Minh Tuấn
29 tháng 11 2019 lúc 18:49

Bài 4:

Khách vãng lai đã xóa
Vũ Minh Tuấn
29 tháng 11 2019 lúc 18:59

Bài 6:

b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)

=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).

Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)

=> \(\widehat{ADB}+\widehat{HDB}=120^0\)

\(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)

=> \(2.\widehat{ADB}=120^0\)

=> \(\widehat{ADB}=120^0:2\)

=> \(\widehat{ADB}=60^0.\)

=> \(\widehat{ADB}=\widehat{HBD}=60^0\)

Xét \(\Delta ABD\) có:

(định lí tổng ba góc trong một tam giác).

=> \(90^0+\widehat{ABD}+60^0=180^0\)

=> \(150^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-150^0\)

=> \(\widehat{ABD}=30^0\)

Vậy \(\widehat{ABD}=30^0.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyen thuy hang
Xem chi tiết
Nguyễn Xuân Hưng
Xem chi tiết
le thi ngoc anh
Xem chi tiết
Lan
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
CHICKEN RB
Xem chi tiết
Jenny Jenny
Xem chi tiết
Tuấn Phan
Xem chi tiết
AnhTu Phan
Xem chi tiết