x2-2(m+1)x+2m+3=0
Viết hệ thức liên hệ giữa x1 và x2 không phụ thuộc m
Cho phương trình: x 2 – (m + 2)x + (2m – 1) = 0 có hai nghiệm phân biệt x 1 ; x 2 . Hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào giá trị của m là:
A. 2 ( x 1 + x 2 ) − x 1 . x 2 = − 5
B. x 1 + x 2 − x 1 . x 2 = − 1
C. x 1 + x 2 + 2 x 1 . x 2 = 5
D. 2 ( x 1 + x 2 ) − x 1 . x 2 = 5
Cho pt: x^2-(m+2)x+(2m-1)=0 có 2 nghệm x1,x2. Lập hệ thức lên hệ giữa x1,x2 không phụ thuộc m.
Cho phuong trình:
a, x2-(m+2)x+(m-1)=0
b,x2+(4m+1)x+2(m-4)=0
Lập hệ thức liên hệ giữa x1,x2 không phụ thuộc m.
Lời giải:
a. Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=m+2$
$x_1x_2=m-1$
$\Rightarrow x_1+x_2-x_1x_2=(m+2)-(m-1)=3$
$\Leftrightarrow x_1+x_2-x_1x_2-3=0$ (đây chính là biểu thức liên hệ giữa $x_1,x_2$ mà không phụ thuộc vào $m$)
b.
$x_1+x_2=-(4m+1)$
$x_1x_2=2(m-4)$
$\Rightarrow x_1+x_2+2x_1x_2=-(4m+1)+4(m-4)=-17$
$\Rightarrow x_1+x_2+2x_1x_2+17=0$
Cho phương trình x2 -2(m-2)x+2m-5=0
a) m=?: phương trình có nghiệm x1,x2
b) với m đó , tìm biểu thức liên hệ giữa x1,x2 không phụ thuộc vào m
a) Để phương trình có nghiệm \(x_1,x_2\)
Thì \(\Delta'>0\)
\(\Leftrightarrow\left(m-2\right)^2-1.\left(2m-5\right)>0\)
\(\Leftrightarrow m^2-4m+4-2m+5>0\)
\(\Leftrightarrow m^2-6m+9>0\)
\(\Leftrightarrow\left(m-3\right)^2>0\)
\(\Leftrightarrow m\ne3\)
b)Với m khác 3. Theo hệ thức viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-4\left(1\right)\\x_1.x_2=2m-5\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được
\(x_1+x_2-x_1.x_2=1\) không phụ thuộc vào m
Cho phương trình: \(x^2+2x-m^2-1=0\)
Tìm hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m
\(x^2+2x-1-m^2=0\Leftrightarrow\left(x-1\right)^2=m^2\)
\(\Leftrightarrow x-1=\sqrt{m^2}=\left|m\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=m\\x-1=-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1+m\\x=1-m\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x_1=1+m\\x_2=1-m\end{matrix}\right.\)
Bài 3: Gọi x1, x2 là nghiệm của phương trình: \(\left(m-3\right)^2-2\left(m-1\right)x+m-5=0\)Hãy lập hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Cho phương trình x^2-2(m+1)x+m-2=0,m thuộc R
Gỉa sử phương trình đã cho có hai nghiệm phân biệt x1 và x2. Tìm hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào m. Tui đang gấp.
Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`
`<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`
`<=>m^2+m+3 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`
`<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`
`=>x_1+x_2-2x_1.x_2=6`
3,cho phương trình bậc hai x2-2(m-1)x+m-2=0 . chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1,x2 . tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
Cho phương trình: 2x2 + (2m-1)x +m-1=0
a.Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn 3x1 -4x2 =11
b.Tìm đẳng thức liên hệ giữa x1, x2 không phụ thuộc vào m
c.Với giá trị nào của m thì x1, x2 cùng dương