cho phương trình \(x^2-4mx+9\left(m-1\right)^2=0\) giả sử phương trình đã cho có hai nghiệm x1,x2 và biểu thức liên hệ giữa các nghiệm độc lập đối với tham số m có dạng là \(\left(x1+x2+a\right)^2=bx1x2\) .giá trị b/a là
cho phương trình x2 - (m+1)x +m2 -2m +2 =0 , tìm m để phương trình có 2 nghiệm x1 , x2 sao cho biểu thức P = x12 +x22 đạt giá trị lớn nhất
cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2
Cho phương trình x2 - (2m+1)x + m2 +1 = 0 , với m là tham số . Tìm tất cả các giá trị m ∈ Z để phương trình có hai nghiệm phân biệt x1 , x2 sao cho biểu thức \(P=\dfrac{x_1x_2}{x_1+x_2}\)
có giá trị là số nguyên
Tìm m để: 2x2 + (m - 6)x - m2 - 3m = 0 có 2 nghiệm phân biệt x1, x2 thoả mãn: 1<x1<x2
Tìm m để phương trình: \(mx^2-2\left(m+1\right)x+m+5=0\) có 2 nghiệm x1,x2 thỏa mãn x1<0<x2<2
Tìm m để: x2 - 2(2m + 1)x + 3m2 + 6m = 0 có 2 nghiệm x1, x2 thoả mãn: x1 + 2x = 16