Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn duy khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 19:15

a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)

\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)

\(=cot^2x\)

\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

=>VT=VP

b:

\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)

\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)

\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)

Minh Nhật
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 6 2020 lúc 15:26

\(cos5x.cos3x+sin7x.sinx=\frac{1}{2}cos8x+\frac{1}{2}cos2x-\frac{1}{2}cos8x+\frac{1}{2}cos6x\)

\(=\frac{1}{2}\left(cos6x+cos2x\right)=cos4x.cos2x\)

\(\frac{1-2sin^22x}{1-sin4x}=\frac{cos^22x-sin^22x}{cos^22x+sin^22x-2sin2x.cos2x}\)

\(=\frac{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}{\left(cos2x-sin2x\right)^2}=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{\frac{cos2x}{cos2x}+\frac{sin2x}{cos2x}}{\frac{cos2x}{cos2x}-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)

\(2cosx-3cos\left(\pi-x\right)+5sin\left(4\pi-\frac{\pi}{2}-x\right)+cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(=2cosx+3cosx-5sin\left(\frac{\pi}{2}+x\right)+cot\left(\frac{\pi}{2}-x\right)\)

\(=5cosx-5cosx+tanx=tanx\)

Phan Thanh Tùng
Xem chi tiết
Phan Thanh Tùng
4 tháng 11 2023 lúc 18:18

A = 4 ( 2 sinx . cosx )2 . cos22x + cos24x

A = 4 . sin22x . cos22x + cos24x

A = ( 2 sin2x . cos2x)2 + cos24x

A = sin2 4x + cos24x  = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2020 lúc 20:08

\(\frac{sin3x+sinx+sin4x}{cos4x+1+cosx+cos3x}=\frac{2sin2x.cosx+2sin2x.cos2x}{2cos^22x+2cos2x.cosx}=\frac{2sin2x\left(cosx+cos2x\right)}{2cos2x\left(cos2x+cosx\right)}=\frac{sin2x}{cos2x}=tan2x\)

\(\frac{sin^22x+2cos\left(2\pi+\pi+2x\right)-2}{-3+4cos2x+cos\left(\pi-4x\right)}=\frac{sin^22x-2cos2x-2}{-3+4cos2x-cos4x}=\frac{4sin^2x.cos^2x-2\left(2cos^2x-1\right)-2}{-3+4\left(1-2sin^2x\right)-\left(1-2sin^22x\right)}\)

\(=\frac{4cos^2x\left(sin^2x-1\right)}{-8sin^2x+2sin^22x}=\frac{2cos^2x.\left(-cos^2x\right)}{-4sin^2x+4sin^2x.cos^2x}=\frac{cos^4x}{2sin^2x\left(1-cos^2x\right)}\)

\(=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2020 lúc 21:48

a/

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-2\left(1-sin^22x\right)=0\)

\(\Leftrightarrow1-\frac{1}{2}\left(cos6x+cos2x\right)-2cos^22x=0\)

\(\Leftrightarrow1-cos4x.cos2x-2cos^22x=0\)

\(\Leftrightarrow2cos^22x-1+cos4x.cos2x=0\)

\(\Leftrightarrow cos4x+cos4x.cos2x=0\)

\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 8 2020 lúc 21:51

b/

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}\right)+\sqrt{3}sin2x=1\)

\(\Leftrightarrow cos2x.cos\left(\frac{\pi}{3}\right)-sin2x.sin\left(\frac{\pi}{3}\right)+\frac{1}{2}+\sqrt{3}sin2x=1\)

\(\Leftrightarrow\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 8 2020 lúc 21:56

c/

\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)

\(\Leftrightarrow3+5cosx=1-cos^2x-cos^2x\)

\(\Leftrightarrow2cos^2x+5cosx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Quân Vũ
Xem chi tiết
thai thai
Xem chi tiết
level max
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2023 lúc 13:11

a: Ta sẽ có hình vẽ sau:

loading...

Đặt \(x=\widehat{B}\)

sin x=sin B=AC/BC

cosx=cosB=AB/BC

\(tanx=tanB=\dfrac{AC}{AB}=\dfrac{sinx}{cosx}\)

=>\(tan^2x=\dfrac{sin^2x}{cos^2x}\)

b: \(cot^2x=\dfrac{1}{tan^2x}=1:\dfrac{sin^2x}{cos^2x}=\dfrac{cos^2x}{sin^2x}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2023 lúc 19:23

a: \(sin\left(x-\dfrac{\Omega}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

=>\(sin\left(x-\dfrac{\Omega}{4}\right)=sin\left(-\dfrac{\Omega}{4}\right)\)

=>\(\left[{}\begin{matrix}x-\dfrac{\Omega}{4}=-\dfrac{\Omega}{4}+k2\Omega\\x-\dfrac{\Omega}{4}=\Omega+\dfrac{\Omega}{4}+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{3}{2}\Omega+k2\Omega\end{matrix}\right.\)

b: \(cos\left(x+\dfrac{\Omega}{4}\right)=cos\left(\dfrac{3}{4}\Omega\right)\)

=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{4}=\dfrac{3}{4}\Omega+k2\Omega\\x+\dfrac{\Omega}{4}=-\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\Omega+k2\Omega\\x=-\Omega+k2\Omega\end{matrix}\right.\)

c: ĐKXĐ: \(\left\{{}\begin{matrix}2x< >\dfrac{\Omega}{2}+k\Omega\\x+\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< >\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\\x< >\dfrac{1}{6}\Omega+k\Omega\end{matrix}\right.\)

\(tan2x=tan\left(x+\dfrac{\Omega}{3}\right)\)

=>\(2x=x+\dfrac{\Omega}{3}+k\Omega\)

=>\(x=\dfrac{\Omega}{3}+k\Omega\)

d: ĐKXĐ: \(2x< >k\Omega\)

=>\(x< >\dfrac{k\Omega}{2}\)

\(cot2x=-\dfrac{\sqrt{3}}{3}\)

=>\(cot2x=cot\left(-\dfrac{\Omega}{3}\right)\)

=>\(2x=-\dfrac{\Omega}{3}+k\Omega\)

=>\(x=-\dfrac{\Omega}{6}+\dfrac{k\Omega}{2}\)