Giải BPT
\(\left|2x-1\right|-5< 3x\)
Giải bpt: \(\left(2x+1\right)^2+\left(1-x\right)3x\le\left(x+2\right)^2\)
\(\left(2x+1\right)^2+\left(1-x\right)3x\le\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+4x+1+3x-3x^2\le x^2+4x+4\)
\(\Leftrightarrow4x^2+4x+3x-3x^2-x^2-4x\le4-1\)
\(\Leftrightarrow3x\le3\Leftrightarrow x\le1\) vậy \(x\le1\)
Giải các bpt sau
a, \(\left(2x-3\right)\left(3x-4\right)\left(5x+2\right)>0\)
b, \(25-16x^2>8x^2-10x\)
c, \(\frac{4x\left(3x+2\right)}{2x+5}>0\)
d, \(\frac{2x-5}{3x+2}\le\frac{3x+2}{2x-5}\)
a/ \(\left(2x-3\right)\left(3x-4\right)\left(5x+2\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}-\frac{2}{3}< x< \frac{4}{3}\\x>\frac{3}{2}\end{matrix}\right.\)
b/ \(\Leftrightarrow24x^2-10x-25< 0\)
\(\Rightarrow-\frac{5}{6}< x< \frac{5}{4}\)
c/ \(\frac{4x\left(3x+2\right)}{2x+5}>0\Rightarrow\left[{}\begin{matrix}-\frac{5}{2}< x< -\frac{2}{3}\\x>0\end{matrix}\right.\)
d/ \(\Leftrightarrow\frac{3x+2}{2x-5}-\frac{2x-5}{3x+2}\ge0\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2-\left(2x-5\right)^2}{\left(2x-5\right)\left(3x+2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(5x-2\right)\left(x+7\right)}{\left(2x-5\right)\left(3x+2\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\le-7\\-\frac{2}{3}< x\le\frac{2}{5}\\x>\frac{5}{2}\end{matrix}\right.\)
Giải bpt : a)\(\left|2x-1\right|< 3x+5\)
b)\(\left|x-1\right|+2\left|x-3\right|=2\)
c)\(\left|x-1\right|+2\left|x-3\right|\ge2\)
Help me with this problem !!
Giai các bpt sau
a,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
b,\(\dfrac{5x-2}{-3}\)\(-\dfrac{2x^2-x}{-2}>\dfrac{x\left(1-3x\right)}{-3}-\dfrac{5x}{-4}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
bài 1giải bpt
a) \(\frac{x+2}{3}-x+1>x+3\)
b) \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\)
c) \(\frac{\left(x-2\right)\sqrt{x-1}}{\sqrt{x-1}}< 2\)
bài 2 \ giải hệ bpt
a) \(\left\{{}\begin{matrix}2-x>0\\2x+1>x-2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{2x-1}{3}< -x+1\\\frac{4-3x}{2}< 3-x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}-2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
Mgọi người giúp mình với ạ
giải các bpt sau
a. \(\sqrt{-x^2+6x-5}>8-2x\)
b. \(\sqrt{\left(x+5\right)\left(3x+4\right)}< 4\left(x-1\right)\)
c. \(2x^2+\sqrt{x^2-5x-6}>10x+15\)
bình phương lên để mất căn rồi lập bảng xét dấu nha bạn
giải các pt và bpt sau
a) \(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
b) \(\dfrac{3x^2+7x-10}{x}=0\)
c) \(x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x\dfrac{1-2x}{3}}{5}\)
\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)
\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)
\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)
Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)
Giải bpt sau
a, \(\left(x+3\right)^2-\left(x-3\right)^2\le3\left(x+1
\right)\)
b, \(2\left(x+3\right).\left(x+4\right)>\left(x-2\right)^2+\left(x-1\right)^2\)
c, \(5x^2-18x+19-\left(2x-3\right)^2>0\)
d, \(\dfrac{\left(3x-2\right)^2}{4}-\dfrac{3\left(x-2\right)}{8}-1>\dfrac{-15x\left(5-3x\right)}{2}\)
e, \(2x^2+2x+2-\dfrac{15\left(x-1\right)}{2}-1>2x\left(x-2,75\right)\)
g, \(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)