Tìm m để \(f\left(x\right)=\frac{2x^2-4x+2}{x^2-3x+5}-m< 0\) đúng với moi x thuộc R
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Cho bt:R=\(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
a/Tìm điều kiện để R xác định
b/Tìm gtri của x để R =0
c/Tìm gtri của x để/R/ =1
a, \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b, \(R=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
\(=\left(\frac{x^2-2x+1}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
\(=\left(\frac{\left(x^2-2x+1\right)\left(x-1\right)-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\right)\)
\(=\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
\(=\frac{x^3-1}{x^3-1}.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
\(b,\) Để R = 0
\(\Leftrightarrow\frac{x^2+1}{x+1}=0\Leftrightarrow x^2+1=0\) ( vô lý)
Vậy ko có giá trị nào của x để R =0
\(c,\left|R\right|=1\Leftrightarrow\left[{}\begin{matrix}R=-1\\R=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x^2+1}{x+1}=-1\\\frac{x^2+1}{x+1}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+1=-x-1\\x^2+1=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
2.
\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)
\(\Leftrightarrow x^2-mx+1>0\forall x\)
\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)
Kết luận: \(-2< m< 2\)
1. tính
a, \(\left(4x^4-10x^3-x^2+15x-5\right):\left(-3+2x^2\right)\)
b, \(\left(19^2-11x^3+2-20x+2x^4\right):\left(x^2+1-4x\right)\)
2. tìm x thuộc Z để f(x) chia hết cho g(x)
a, \(f\left(x\right)=2x^3+3x^2-x+4\) và \(g\left(x\right)=2x+1\)
b, \(f\left(x\right)=3x^3-x^2+6x\) và \(g\left(x\right)=3x-1\)
Mọi người biết giúp mình với ạ, tối là đi học r, cần gấp lắm. Xin cảm ơn!!
Câu 2:
a: Để f(x) chia hết cho g(x) thì \(2x^3+3x^2-x+4⋮2x+1\)
\(\Leftrightarrow2x^3+x^2+2x^2+x-2x-1+5⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-1;2;-3\right\}\)
b: Để f(x) chia hết cho g(x) thì \(3x^3-x^2+6x⋮3x-1\)
\(\Leftrightarrow3x^3-x^2+6x-2+2⋮3x-1\)
\(\Leftrightarrow3x-1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
tìm tất cả các giá trị của tham số m để bpt \(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m\) có nghiệm đúng với mọi x thuộc R
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
Cho các đa thức \(F\left(x\right)=4x^2+3x-2;G\left(x\right)=3x^2-2x+5\) và \(H\left(x\right)=5x^2-2x+3\). Tìm x để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)
Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
Cho \(\left(m-1\right)x^3+2\left(m-1\right)x^2+mx\). Tìm tất cả các giá trị của m để f'(x)<0 với mọi x thuộc R
\(f'\left(x\right)=3\left(m-1\right)x^2+4\left(m-1\right)x+m\)
- Với \(m=1\Rightarrow f'\left(x\right)=1>0\) (không thỏa mãn)
- Với \(m\ne1\Rightarrow f'\left(x\right)< 0;\forall x\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3m\left(m-1\right)< 0\\m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 4\\m< 1\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu