Tính cos2a theo m biết a thỏa: \(\frac{cos7a-2cos5a+cos3a}{sin6a-sin4a}=2m\)
Don gian bieu thuc sau
a) A= \(\dfrac{1-cosa+cos2a}{sin2a-sina}\) b) B= \(\sqrt{\dfrac{1}{2}-\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}cosa}}\) (0<a≤\(\pi\)).
c) C= \(\dfrac{cosa-cos3a+cos5a-cos7a}{sina+sin3a+sin5a+sin7a}\)
có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
Thu gọn biểu thức:
A=sin2x+sin4x+sin6x+sin8x
B=\(\frac{sin2a-2sin4a+sin6a}{1+cos2a+cos4a}\)
C=\(\frac{cos5a.cos3a+sin7a.sina}{sin6a+sin2a}\)
a) cos4a - sin4a +1 = 2cos2a
b) cos6a + sin6a + 3sin2a.cos2a = 1
b: \(=\left(\cos^2\alpha+\sin^2\alpha\right)^3-3\cos^2\alpha\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)
=1
\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)
\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a\)
\(=2cos^2a\)
\(cos^6a+sin^6a+3sin^2a.cos^2a\)
\(=\left(cos^2a+sin^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a.1+3sin^2a.cos^2a\)
\(=1\)
Chứng minh :
\(\frac{sina-sin3a-sin5a-sin7a}{cosa-cos3a-cos5a-cos7a}=-tan2a\)
Đề sai rồi bạn ơi, mình không biết các loại máy khác bấm như nào nhma mình dùng fx 580 thì mode B xét đúng/sai thì máy cho kết quả là biểu thức này sai nha :v
Rút gọn
\(A=\left(\frac{1}{cos2x}+1\right).tanx\)
\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}\)
\(C=\frac{sin2a+sina}{1+cos2a+cosa}\)
\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)
\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)
c1 : chứng minh \(\left(\frac{1}{cos2x}+1\right)tanx=tan2x\)
c2 : chứng minh \(\frac{cos7a+cos5a+cos3a+cosa}{sin7a+sin5a+sin3a+sina}=cot4a\)
\(\left(\frac{1}{cos2x}+1\right)tanx=\left(\frac{cos2x+1}{cos2x}\right).\frac{sinx}{cosx}=\frac{2cos^2x}{cos2x}.\frac{sinx}{cosx}\)
\(=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)
\(\frac{cos7a+cosa+cos5a+cos3a}{sin7a+sina+sin5a+sin3a}=\frac{2cos4a.cos3a+2cos4a.cosa}{2sin4a.cos3a+2sin4a.cosa}\)
\(=\frac{cos4a\left(2cos3a+2cosa\right)}{sin4a\left(2cos3a+2cosa\right)}=\frac{cos4a}{sin4a}=cot4a\)
Sin4a/1+cos4a + cos2a/1+cos2a = tana
Sin4a/1+cos4a + cos2a/1+cos2a = tana
Đề sai, nói mấy lần rồi bạn ko tin nhỉ? Bạn cho thử a một góc nào đó rồi bấm xem vế trái và vế phải có bằng nhau không?
Rút gọn biểu thức sau:
A=4sinx*cosx*cos2x*cos4x
B=cos^4x -6cos^x*sin^2x+sim^4x
C=\(\frac{\text{cos2a-cos4a}}{sin4a+sin2a}\)
D=\(\frac{\text{cosa+cos3a+cos5a}}{sina+sin3a+sin5a}\)
E=sin^2(\(\frac{\pi}{8}\)+\(\frac{x}{2}\))-sin^2(\(\frac{\pi}{8}\)-\(\frac{x}{2}\))
F=\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
\(A=2sin2x.cos2x.cos4x=sin4x.cos4x=\frac{1}{2}sin8x\)
\(B=sin^4x+cos^6x-6sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x\)
\(=1-2\left(2sinx.cosx\right)^2=1-2sin^22x=cos4x\)
\(C=\frac{cos2a+1-2cos^22a}{2sin2a.cos2a+sin2a}=\frac{\left(1-cos2a\right)\left(2cos2a+1\right)}{sin2a\left(2cos2a+1\right)}=\frac{1-cos2a}{sin2a}\)
\(=\frac{1-\left(1-2sin^2a\right)}{2sina.cosa}=\frac{2sin^2a}{2sina.cosa}=\frac{sina}{cosa}=tana\)
\(D=\frac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}=\frac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\frac{cos3a}{sin3a}=cot3a\)
\(E=\frac{1}{2}-\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)-\frac{1}{2}+\frac{1}{2}cos\left(\frac{\pi}{4}+x\right)\)
\(=\frac{1}{2}\left[cos\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\right]=-sin\frac{\pi}{4}.sinx=-\frac{\sqrt{2}}{2}sinx\)