Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ma Ron
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 8:05

\(y=x^2-1\) là hàm bậc 2

Thuỳ Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2022 lúc 17:26

D là đáp án đúng

Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 17:26

Chọn D

duongtranthanhhien
Xem chi tiết
Trần Minh Hoàng
27 tháng 5 2021 lúc 20:03

Xét hàm số \(y=x^3-x^2+x\). Ta có \(y'=3x^2-2x+1=\left(x-1\right)^2+2x^2>0\) nên hàm số đồng biến trên R. Chọn C

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 0:14

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

Loan Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:27

Câu 3: B

Câu 5: A

Câu 6: B

Câu 8: C

Câu 9: B

Câu 10:B

Câu 11: B

Câu 12: B

nunehhh
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 10:21

\(f\left(-x\right)=2\left(-x\right)^3+3x=-\left(2x^3-3x\right)=-f\left(x\right)\left(loại\right)\\ f\left(-x\right)=\left(-x\right)^2+2x=x^2+2x\ne f\left(x\right)\left(loại\right)\\ f\left(-x\right)=\sqrt{\left(-x\right)^2+1}=\sqrt{x^2+1}=f\left(x\right)\left(nhận\right)\\ f\left(-x\right)=2\left(-x\right)^4-3\left(-x\right)^2-x=2x^4-3x^2-x\ne f\left(x\right)\left(loại\right)\)

Chọn C

Nguyễn Kiều Anh
Xem chi tiết
Truong Dung
Xem chi tiết
Akai Haruma
12 tháng 7 2021 lúc 23:43

a. Với $x_1, x_2\in\mathbb{R}$ thỏa $x_1\neq x_2$ thì:

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{-2(x_1^2-x_2^2)+(x_1-x_2)}{x_1-x_2}=1-2(x_1+x_2)\)

Với $x_1,x_2> \frac{1}{4}$ thì $A< 0$ nên hàm số nghịch biến trên $(\frac{1}{4}; +\infty)$

Với $x_1,x_2< \frac{1}{4}$ thì $A>0$ nên hàm số đồng biến trên $(-\infty; \frac{1}{4})$

 

Akai Haruma
12 tháng 7 2021 lúc 23:50

b. TXĐ: $D=(-\infty; 2]$

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2-x_1}-\sqrt{2-x_2}}{x_1-x_2}=\frac{-1}{\sqrt{2-x_1}+\sqrt{2-x_2}}< 0\)

Vậy hàm số nghịch biến trên tập xác định $(-\infty;2]$

c. TXĐ: $D=[0;2]$

\(A=\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\sqrt{2x_1-x_1^2}-\sqrt{2x_2-x_2^2}}{x_1-x_2}=\frac{2-(x_1+x_2)}{\sqrt{2x_1-x_1^2}+\sqrt{2x_2-x_2^2}}\)

Nếu $x_1,x_2\in (1;2)$ thì $A<0$ nên hàm số nghịch biến trên $(1;2)$

Nếu $x_1,x_2\in (0;1)$ thì $A>0$ nên hàm số nghịch biến trên $(0;1)$

 

 

Nguyễn Hồng Anh
Xem chi tiết
Thảo Thảo
9 tháng 12 2021 lúc 21:00

TCN: y= a/c= 1/2   

=> đáp án A