cho sin a=0,8 tính cos a
Cho tam giác abc vuông tại a biết sin B=0,8. Tính cos B và cos C
Cho cos a =0,8. Hãy tìm sin a, tan a, cot a
\(\sin^2a+cos^2a=1\Rightarrow sin^2a=1-0,8^2=0,36\)độ 0<=sina<=1 nên ta có \(sina=0.6\)
lại có \(\frac{sina}{cosa}=tana\Rightarrow tana=\frac{0,6}{0,8}=0.75\)
\(\frac{cosa}{sina}=cotga\Rightarrow cotga=\frac{0.8}{0.6}=\frac{4}{3}\)
Cho \(sin\alpha=0,8\). Tính \(cos\alpha,tan\alpha,cot\alpha\)
\(cos^2\alpha=1-sin^2\alpha=1-\left(0,8\right)^2=0,36\)
\(\Rightarrow cos\alpha=0,6\)
\(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow cot^2\alpha=\dfrac{1}{sin^2\alpha}-1=\dfrac{9}{16}\)
\(\Rightarrow cot\alpha=0,75\)
\(tan\alpha=\dfrac{1}{cot\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)
HD để bạn tự lm cho dễ hiểu nhâ
-Dựa vào công thức sin^2a+cos^2a=1
=>cosa=?
-tana=sina/cosa
-cota=cosa/sina
\(sin^{2}x+cos^{2}x=1\)
\(\Leftrightarrow\)\(cos^{2}x=1-sin^{2}x\)
\(\Leftrightarrow\)\(cos^{2}x=1-(0,8)^{2}\)
\(cos^{}x=0,6\)
\(tanx=\dfrac{sinx}{cosx}=\dfrac{0,8}{0,6}=\dfrac{4}{3} \)
\(cotx=\dfrac{cosx}{sinx}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\)
a, Cho cos α = 0,8. Hãy tính: sin α, tan α, cot α ?
b, Hãy tìm sin α, cos α, biết tan α = \(\frac{1}{3}\)
a) cho sin alpha = 4/5 tính a = 5 sin alpha + 3 cos alpha b) cho cotan alpha = 1/3 Tính B = sin alpha trừ cos alpha trên sin alpha + cos alpha bài này cho học sinh khá giỏi nè
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
Cho sin\(\alpha\) + cos\(\alpha\) =\(\sqrt{2}\)
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
a. cho sin = 8/17 . Tính cos , tan , cot
b. cho cot = 3/4 . Tính cos , sin , cot
Lớp 9 nên coi như các góc này đều nhọn
a.
\(cosa=\sqrt{1-sin^2a}=\dfrac{15}{17}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{8}{15}\)
\(cota=\dfrac{1}{tana}=\dfrac{15}{8}\)
b.
\(1+cot^2a=\dfrac{1}{sin^2a}\Rightarrow sina=\dfrac{1}{\sqrt{1+cot^2a}}=\dfrac{4}{5}\)
\(cosa=\sqrt{1-sin^2a}=\dfrac{3}{5}\)
\(tana=\dfrac{1}{cota}=\dfrac{4}{3}\)
a) \(\cos=\sqrt{1-\sin^2}=\sqrt{1-\dfrac{64}{289}}=\dfrac{15}{17}\)
\(\tan=\dfrac{\sin}{\cos}=\dfrac{8}{17}:\dfrac{15}{17}=\dfrac{8}{15}\)
\(\cot=\dfrac{\cos}{\sin}=\dfrac{15}{17}:\dfrac{8}{17}=\dfrac{15}{8}\)
cho tan a =1/3 tính cos a +sin a /cos a - sin a
Ta có: \(\frac{cosa+sina}{cosa-sina}=\frac{\frac{cosa}{cosa}+\frac{sina}{cosa}}{\frac{cosa}{cosa}-\frac{sina}{cosa}}=\frac{1+tana}{1-tana}=\frac{1+\frac{1}{3}}{1-\frac{1}{3}}=2\)