\(\sqrt{5x-1}-\sqrt{x-1}\ge\sqrt{x-4}\)
giải các bpt sau:
\(\sqrt{x+2}+\sqrt{x-1}< \sqrt{3x+3}\)
\(\sqrt{x-3}+\sqrt{2x+1}< \sqrt{5x-4}\)
\(\sqrt{x+2}+\sqrt{2x-1}\ge\sqrt{6x-1}\)
a/ ĐKXĐ \(x\ge1\)
\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)
\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)
\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)
\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)
Vậy nghiệm của BPT là \(1\le x< 2\)
b/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)
\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)
\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)
\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)
\(\Rightarrow3\le x< 4\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)
\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)
- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{2}{3}\) hai vế ko âm
\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)
\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)
Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)
GIẢI Bất phương trình
1) \(\sqrt{x^2+x-2}+\sqrt{x^2+2x-3}\le\sqrt{x^2+4-5}\)
2) \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
3)\(\frac{9x^2-4}{\sqrt{5x^2-1}}< 3x+2\)
4) \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge\sqrt{x^2-5x+4}\)
Giải bất phương trình sau:
\(\sqrt{1+x}-\sqrt{1-x}\ge x\)
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
a/ \(-1\le x\le1\)
\(\Leftrightarrow\frac{2x}{\sqrt{1+x}+\sqrt{1-x}}-x\ge0\)
\(\Leftrightarrow x\left(\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\right)\ge0\)
Do \(0< \sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\)
\(\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\ge1\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\ge0\)
\(\Rightarrow x\ge0\)
Vậy nghiệm của BPT là \(0\le x\le1\)
b/ \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}\ge2\sqrt{\left(x-1\right)\left(x-4\right)}\)
- Với \(x=1\) thỏa mãn
- Với \(x\ge4\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}\ge2\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x-4}+\sqrt{x-3}-\sqrt{x-4}\ge0\)
\(\Leftrightarrow\frac{2}{\sqrt{x-2}+\sqrt{x-4}}+\frac{1}{\sqrt{x-3}+\sqrt{x-4}}\ge0\) (luôn đúng)
- Với \(x< 1\Rightarrow\sqrt{2-x}+\sqrt{3-x}\ge2\sqrt{4-x}\)
Tương tự bên trên ta có BPT luôn sai
Vậy nghiệm của BPT đã cho là \(\left[{}\begin{matrix}x=1\\x\ge4\end{matrix}\right.\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
cho \(x\ge-\dfrac{1}{3}\). tìm GTNN của \(E=5x-6\sqrt{2x+7}-4\sqrt{3x-1}+2\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
giải BPT :
a. \(\sqrt[3]{x+6}+\sqrt{x-1}\ge x^2-1\)
b.2\(\sqrt[3]{x+4}+\sqrt{2x+7}+x^2+8x+13\)
c.\(4x^3+5x^2+1\ge\sqrt{3x+1}-3x\)
giúp với ạ
tìm x thoả mãn
\(\left(x+2\right)\left(\sqrt{2x+3}+\sqrt{x+1}\right)+\sqrt{2x^2+5x+3}=1\left(với:x\ge-1\right)\)
1. 2x2 - 6x - \(\sqrt{x^2+5x+1}=11\)
2. \(\sqrt{x-2}-\sqrt{3x-5}\le2x-3\)
3. (\(\sqrt{x+3}-\sqrt{x-1}\)).(1+\(\sqrt{x^2+2x-3}\)) \(\ge\) 4
Giải bft ( lập bảng xét dấu nếu cần )
1. \(\sqrt{x^2-1}\ge\sqrt{2x^2+2x}\)
2. (x+4)(x+1) - \(3\sqrt{x^2+5x+2}< 6\)
2) ĐK: \(x^2+5x+2\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\le\frac{-5-\sqrt{17}}{2}\\x\ge\frac{-5+\sqrt{17}}{2}\end{array}\right.\)
bpt \(\Leftrightarrow x^2+5x+4-3\sqrt{x^2+5x+2}< 6\)
Đặt \(t=\sqrt{x^2+5x+2}\left(t\ge0\right)\) , bất pt trở thành:
\(t^2+2-3t< 6\Leftrightarrow t^2-3t-4< 0\Leftrightarrow-1< t< 4\)
Kết hợp điều kiện được: \(0\le t< 4\Rightarrow0\le\sqrt{x^2+5x+2}< 4\Leftrightarrow x^2+5x+2< 16\)
\(\Leftrightarrow x^2+5x-14< 0\Leftrightarrow-7< x< 2\)
Kết hợp điều kiện, bất pt đã cho có tập nghiệm:
(-7; \(\frac{-5-\sqrt{17}}{2}\)] \(\cup\) [ \(\frac{-5+\sqrt{17}}{2}\); 2)