Giải các bất phương trình sau:
1. \(\sqrt{5x+1}-\sqrt{4x-1}< 3\sqrt{x}\)
2. \(\sqrt{x+2}-\sqrt{3-x}< \sqrt{5-2x}\)
3 \(\dfrac{\sqrt{12+x-x^2}}{x-11}\ge\dfrac{\sqrt{12+x-x^2}}{2x-9}\)
4.\(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x+18}\).
giải BPT :
a. \(\sqrt[3]{x+6}+\sqrt{x-1}\ge x^2-1\)
b.2\(\sqrt[3]{x+4}+\sqrt{2x+7}+x^2+8x+13\)
c.\(4x^3+5x^2+1\ge\sqrt{3x+1}-3x\)
giúp với ạ
giải các BPT :
1. \(\sqrt{x^2-3x+2}+\sqrt{x^2-3x+16}>3\)
2.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\le2x+2\)
3.\(\sqrt{2x-1}+\sqrt{3x-2}< \sqrt{4x-3}+\sqrt{5x-4}\)
Câu 1: Tìm m để \(mx^2-2mx-1\le0,\forall x\in\left[0;3\right]\)
Câu 2: Giải bất phương trình:
a) \(2\left(x-1\right)\sqrt{x^2+2x-1}\le x^2-2x-1\)
b) \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)
c)\(\frac{x^2-x}{\sqrt{x^4+3x^2}-2x}\le1\)
d)\(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
e) \(\sqrt{x+1}-\sqrt{3x^2-4x-15}+\sqrt{x-3}>0\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Giải các bất phương trình sau:
1) \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
2) \(\sqrt{2x^2-6x+8}-\sqrt{x}\le x-2\)
3) \(4\left(x+1\right)^2< \left(2x+10\right)\left(1-\sqrt{3+2x}\right)\)
4) \(4\sqrt{x+1}+2\sqrt{2x+3}\le\left(x-1\right)\left(x^2-2\right)\)
Bài 2 : Giải các phương trình sau
1 , \(x\left(x+5\right)=2\sqrt[3]{x^2+5x-2}-2\)
2 , \(\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}\)
3 , \(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
4 , \(x^2-2x-8=4\sqrt{\left(4-x\right)\left(x+2\right)}\)
5 , \(x^2+5x+2+2\sqrt{x^2+5x+10}=0\)
6 , \(\sqrt{2x^2+3x-5}=x+1\)
7 , \(\left(x-1\right)\left(x-3\right)+3\sqrt{x^2-4x+5}-2=0\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)