Tìm tất cả các cặp số x,y nguyên thoả mãn xy-2y-3=3x-x^2
Tìm tất cả các cặp số nguyên ;x y thoả mãn điều kiện
x^2-xy-x+2y+1=0
PT\(\Leftrightarrow x^2-x+1=xy-2y\)
\(\Leftrightarrow x^2-2x+x-2+3=y(x-2)\)
\(\Leftrightarrow y\left(x-2\right)-x^2+2x-x+2=3\)
\(\Leftrightarrow y\left(x-2\right)-\left(x+1\right)\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(y-x-1\right)=3\) (*)
Vì \(\) \(x,y\in Z\) nên \(\begin{cases}x-2\in Z\\ y-x-1\in Z\end{cases}\)
=>Để (*) xảy ra thì tích của 2 biểu thức phải là tích của 2 ước số nguyên của 3
Đến đây bạn thay \(\left(x-2;y-x-1\right)\in{ ( 1 , 3 ) , ( 3 , 1 ) , ( - 1 , - 3 ) , ( - 3 , - 1 ) }\)
\(\Rightarrow(x-2;y-x-1)\in{(1;3),(3;1),(-1;-3),(-3;-1)}\)
\((x;y)\in{(3;7),(5;7),(1;-1),(-1;-1)}\)
Tìm tất cả các cặp số nguyên ;x y thoả mãn điều kiện x^2-xy-x+2y+1=0
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
Tìm cặp số nguyên (x;y) thoả mãn:
\(x^2y+xy-2x^2-3x+4=0\)
Tìm tất cả các cặp số nguyên không âm thoả mãn: x-y=x2+xy+y2
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Tìm cặp số nguyên thoả mãn (x;y) thoả mãn xy-(x+2y)=3
\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:
| \(y-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
| \(x-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
| \(y\) | \(2\) | \(6\) | \(0\) | \(-4\) |
| \(x\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)
=>xy-x-2y=3
=>x(y-1)-2y+2=5
=>(x-2)(y-1)=5
=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)
Tìm tất cả các cặp số nguyên (x;y) biết x, y thoả mãn |xy|+|x-y|=1. Giải thích?
Tìm tất cả các cặp số nguyên dương (x; y) thoả mãn x6 + x3y = y3 + 2y2.
Tìm tất cả các cặp số nguyên x,y thoả mãn: 2x2 + 5y2 - 4(xy+1) = 7
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
có tất cả bao nhiêu số nguyên x;y thoả mãn xy+3x-2y=11
xy + 3x - 2y = 11
x(y + 3) - 2y = 11
x(y + 3) - 2y - 6 = 11 - 6
x( y +3) - 2(y + 3) = 5
(x - 2)(y +3) = 5
Bạn liệt kê bảng ra
xy + 3x-2y=11
<=> x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
suy ra (x-2) và (y+3) là các ước nguyên của 5.
Th1. x-2=1 <=>x=3
.......y+3=5 <=> y=2
Th2 x-2=-1 <=> x=1
.......y+3=-5 <=> y= -8
Th3. x-2=5 <=> x=7
.......y+3=1 <=> y= -2
Th4. x-2= -5 <=> x= -3
.......y+3= -1 <=> y= -4
Vậy (x,y) = (3, 2); (1, -8); (7, -2); (-3, -4)
=> có 4 cặp số => 8 số
xy+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2.(y+3)=5
<=>(x-2)(y+3)=5
rồi lập bảng là ra