PT\(\Leftrightarrow x^2-x+1=xy-2y\)
\(\Leftrightarrow x^2-2x+x-2+3=y(x-2)\)
\(\Leftrightarrow y\left(x-2\right)-x^2+2x-x+2=3\)
\(\Leftrightarrow y\left(x-2\right)-\left(x+1\right)\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(y-x-1\right)=3\) (*)
Vì \(\) \(x,y\in Z\) nên \(\begin{cases}x-2\in Z\\ y-x-1\in Z\end{cases}\)
=>Để (*) xảy ra thì tích của 2 biểu thức phải là tích của 2 ước số nguyên của 3
Đến đây bạn thay \(\left(x-2;y-x-1\right)\in{ ( 1 , 3 ) , ( 3 , 1 ) , ( - 1 , - 3 ) , ( - 3 , - 1 ) }\)
\(\Rightarrow(x-2;y-x-1)\in{(1;3),(3;1),(-1;-3),(-3;-1)}\)
\((x;y)\in{(3;7),(5;7),(1;-1),(-1;-1)}\)