\(\left(-3m-2\right)^2-96\)≥0
\(\left(2-9m\right)^2-576\)≥0
tìm m thỏa mãn 2 pt trên
cho pt: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
tìm m để pt có 2 nghệm phân biệt x1; x2 thỏa mãn \(1< x_1< x_2< 6\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)
Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)
Vậy \(4< m< 6\) thỏa yêu cầu đề
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)
1.Tìm m để bpt \(2\left|x-m\right|+x^2+2>2mx\) thỏa mãn với mọi x
2. Tìm m để bpt : \(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\) có nghiệm
1.
\(2\left|x-m\right|+x^2+2>2mx\)
\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)
\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)
\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)
Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)
\(\Leftrightarrow-\sqrt{2}< m< 2\)
Vậy \(-\sqrt{2}< m< 2\)
2.
\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)
Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)
\(\Leftrightarrow2m^2-3m+1< 0\)
\(\Leftrightarrow\dfrac{1}{2}< m< 1\)
cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)
tìm m để pt có 2 nghiệm x\(_1\),x\(_2\) thỏa mãn \(\left|x_1-x_2\right|=2\)
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-2m+1-2m+3=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Vậy pt luôn có 2 nghiệm x1;x2
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=2\)
Thay vào ta đc \(4\left(m-1\right)^2-4\left(2m-3\right)=2\Leftrightarrow4m^2-8m+4-8m+12=2\)
\(\Leftrightarrow4m^2-16m+14=0\Leftrightarrow m=\dfrac{4\pm\sqrt{2}}{2}\)
Cho PT: \(x^2+2\left(m+1\right)x-8=0\left(1\right)\).
Tìm \(m\) để PT có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(x_1^2=x_2\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=\left(m+1\right)^2+32>0\left(\text{đúng }\forall m\right)\)
Theo Vi-ét: \(\begin{cases} x_1+x_2=-2(m+1)=-2m-2\\ x_1x_2=-8 \end{cases}\)
Vì $x_1$ là nghiệm của PT nên \(x_1^2=-2(m+1)x_1+8\)
Ta có \(x_1^2=x_2\)
\(\Leftrightarrow-2\left(m+1\right)x_1+8=x_2\\ \Leftrightarrow x_2+2mx_1+2x_1-8=0\\ \Leftrightarrow\left(x_1+x_2\right)+2mx_1+x_1-8=0\\ \Leftrightarrow x_1\left(2m+1\right)-2m-10=0\\ \Leftrightarrow x_1=\dfrac{2m+10}{2m+1}\)
Mà \(x_1+x_2=-2m-2\Leftrightarrow x_2=-2m-2-\dfrac{2m+10}{2m+1}=\dfrac{-4m^2-8m-12}{2m+1}\)
Ta có \(x_1x_2=-8\)
\(\Leftrightarrow\dfrac{2m+10}{2m+1}\cdot\dfrac{-4m^2-8m-12}{2m+1}=-8\\ \Leftrightarrow\left(2m+10\right)\left(m^2+2m+3\right)=2\left(2m+1\right)^2\\ \Leftrightarrow m^3+3m^2+9m+14=0\\ \Leftrightarrow m^3+2m^2+m^2+2m+7m+14=0\\ \Leftrightarrow\left(m+2\right)\left(m^2+m+7\right)=0\\ \Rightarrow m=-2\)
Vậy $m=-2$
9.1
cho `x^2 -2(m+1)x-m^2 -3=0`
tìm m để pt có 2 nghiệm pb thỏa mãn \(\left(x_1+x_2-6\right)^2\left(x_2-2x_1\right)=\left(x_1x_2+7\right)^2\left(x_1-2x_2\right)\)
cho pt \(x^2-4nx+12n-9=0\)
tìm giá trị của n để pt trên có 2 nghiệm x1; x2 thỏa mãn đẳng thức
\(x_1\left(x_2+3\right)+x_2\left(x_1+3\right)-54=0\)
\(\text{Δ}=\left(-4n\right)^2-4\left(12n-9\right)\)
\(=16n^2-48n+36\)
\(=\left(4n-6\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
Theo đề, ta có: \(2x_1x_2+3\left(x_1+x_2\right)-54=0\)
\(\Leftrightarrow2\left(12n-9\right)+3\cdot4n-54=0\)
=>24n-18+12n-54=0
=>36n-72=0
hay n=2
tìm m để 2 pt sau có nghiệm chung
\(2x^2-\left(3m+2\right)=0\) và \(4x^2-\left(9m-2\right)x+36=0\)
tìm m để 2 pt sau có nghiệm chung: \(2x^2-\left(3m+2\right)x+12=0\) và \(4x^2-\left(9m-2\right)x+36=0\)
Lời giải:
Trước tiên, cần tìm đk của $m$ để 2 PT có nghiệm.
\(\left\{\begin{matrix} \Delta_1=(3m+2)^2-8.12>0\\ \Delta_2=(9m-2)^2-576>0\end{matrix}\right.(*)\)
Gọi nghiệm chung của 2 pt trên là $a$
Ta có: \(\left\{\begin{matrix} 2a^2-(3m+2)a+12=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4a^2-2(3m+2)a+24=0\\ 4a^2-(9m-2)a+36=0\end{matrix}\right.\)
\(\Rightarrow a(m-2)=4\)
Để $a$ tồn tại thì $m-2\neq 0$. Khi đó $a=\frac{4}{m-2}$
Thế vào PT(1):
\(2(\frac{4}{m-2})^2-(3m+2).\frac{4}{m-2}+12=0\)
Giải PT trên ta thu được $m=3$ (thỏa mãn $(*)$)
Vậy.....