x+y=2m-3;xy=m+1.tìm giá trị nhỏ nhất A=(x2+1)(y2+1)
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Hàm số xác định trên R khi và chỉ khi:
a.
\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
b.
\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm
\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)
\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)
c.
\(x^2+6x+2m-3>0\) với mọi x
\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)
\(\Leftrightarrow m>6\)
e.
\(-x^2+6x+2m-3>0\) với mọi x
Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn
f.
\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)
\(\Leftrightarrow1< m< 3\)
Cho hàm số y=(2m-5)x+3
a) tìm m để y=(2m-5)x+3 cắt trục tung tại điểm ở bên trái trục tung
b) tìm m để y=(2m-5)x+3 cắt đường thẳng y= 3x+1 tại điểm có hoành độ âm
c) tìm m để y=(2m-5)x+3 cắt đường thẳng y= 5x-3 tại điểm có tung độ dương
\(\left(3x^{2m-1}-\frac{3}{7}y^{3n-5}+x^{2m}y^{3n}-3y^2\right)\cdot8x^{3-2m}y^{6-3n}\)
Tìm m để mỗi hàm số sau là hàm số bậc nhất:
a) \(y=\left(-m^2+m-2\right).x+\left(2m^2+\sqrt{3}\right)\)
b) \(y=\left(2m^2-6m\right)x^2+\left(2m+3\right)x+7\)
a, Để hàm số là hàm bậc nhất thì \(\left(-m^2+m-2\right)\ne0\)
\(\Rightarrow-\left(m-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ne0\) (luôn đúng vì \(-\left(m-\dfrac{1}{2}\right)^2\le0\forall m\))
Vậy hàm số luôn là hàm bậc nhất.
b,Để hàm số là hàm bậc nhất thì \(\left\{{}\begin{matrix}2m^2-6m=0\\2m+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=0\\m=3\\m\ne-\dfrac{3}{2}\end{matrix}\right.\left(tm\right)\)
Vậy hàm số là hàm bậc nhất khi m ∈ {0;3}.
Với giá trị nào của m thì hàm số đồng biến? nghịch biến?
a, y = (2m+3)x-m+1
b, y = (2m+5)x+m+3
c, y = mx-3-x
d, y = m(x+2)
a) Hàm số đồng biến khi (2m+3) > 0 => m > -3/2
Hs nghịch biến khi (2m+3) < 0 => m < -3/2
b) , c , d tương tự
\(Đk:m\ne\dfrac{1}{2}\)
\(x=\dfrac{-3}{1-2m}\); \(y=\dfrac{4-5m}{1-2m}\)
Tìm m để \(x=|y|\)
\(-\dfrac{3}{1-2m}=\left|\dfrac{4-5m}{1-2m}\right|\Leftrightarrow\dfrac{3}{2m-1}=\left|\dfrac{4-5m}{1-2m}\right|\)
TH1 : \(\dfrac{3}{2m-1}=\dfrac{4-5m}{1-2m}\Leftrightarrow3=5m-4\Leftrightarrow m=\dfrac{7}{5}\)(tm)
TH2 : \(\dfrac{3}{2m-1}=\dfrac{5m-4}{1-2m}\Leftrightarrow3=4-5m\Leftrightarrow m=\dfrac{1}{5}\)(tm)
(3x2m-1- 3/7y3n-5+x2my3n-3y2).8x3-2my
Tìm m để hàm số sau nghịch biến:
a) y=(-m^2+2m-1)x-5
b)y=(m^2-m)x-1
c)y=3-(m^2+2m-3)x
Tìm m để
a) đường thẳng (d1): y= (2-m2)x- m-5 song song với (d2): y= -2x +2m +1
b) (d1): y= (2m+1)x-(2m+3) song song với (d2): y= m(x+1)-x
c) (d1):y= m2x+ 1-4m giao với (d2): y= -1/4x+1 tại 1 điểm nằm trên trục hoành
(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)
\(\Rightarrow m=\pm2.\)
(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).
\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow m=-2.\)
(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)
\(m^2x+1-4m=-\dfrac{1}{4}x+1\)
\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).
Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).
Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\).
Tìm m để 3 đường thẳng phân biệt sau đồng quy
2x – y = m ; x - y = 2m ; mx – (m – 1)y = 2m – 1
\(2x-y=m\Leftrightarrow y=2x-m\\ x-y=2m\Leftrightarrow y=x-2m\)
PT hoành độ giao điểm 2 đt đầu: \(2x-m=x-2m\Leftrightarrow x=-m\Leftrightarrow y=-3m\Leftrightarrow A\left(-m;-3m\right)\)
Để 3 đt đồng quy thì \(A\left(-m;-3m\right)\in mx-\left(m-1\right)y=2m-1\)
\(\Leftrightarrow-m^2+3m\left(m-1\right)=2m-1\\ \Leftrightarrow2m^2-5m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{17}}{4}\\m=\dfrac{5-\sqrt{17}}{4}\end{matrix}\right.\)