Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thy Nguyễn
Xem chi tiết
subjects
28 tháng 12 2022 lúc 12:17

\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)

Kim Tuấn Hiệp
28 tháng 12 2024 lúc 18:36

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

minh anh
Xem chi tiết
meme
7 tháng 9 2023 lúc 13:26

Để chứng minh S chia hết cho 2 và S chia hết cho 57, ta sẽ xem xét từng thành phần trong công thức của S.

Đầu tiên, ta xét dãy từ 71 đến 72025. Trong dãy này, có 72025 - 71 + 1 = 71955 số.

Ta biết rằng nếu một số chia hết cho 2, thì số đó là số chẵn. Trong dãy từ 71 đến 72025, ta có 2 số lẻ liên tiếp (71 và 72), sau đó là 2 số chẵn liên tiếp (73 và 74), và tiếp tục lặp lại quy luật này. Vì vậy, trong 71955 số này, ta có 71955/2 = 35977.5 cặp số chẵn và lẻ.

Do đó, tổng của các số chẵn trong dãy này là 35977.5 * 2 = 71955.

Tiếp theo, ta xét số 72024. Ta biết rằng 72024 chia hết cho 2.

Cuối cùng, ta xét số 72025. Ta biết rằng 72025 chia hết cho 57, vì 72025 = 57 * 1265.

Vậy tổng S chia hết cho 2 và chia hết cho 57.

Rosie
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 12 2021 lúc 21:07

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

Akai Haruma
23 tháng 12 2021 lúc 21:09

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

Kim Tuấn Hiệp
28 tháng 12 2024 lúc 18:36

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

 

Bùi Phương Linh
Xem chi tiết
Kim Tuấn Hiệp
28 tháng 12 2024 lúc 18:36

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

Ngọc Thoa
Xem chi tiết
Phong
10 tháng 11 2023 lúc 10:22

\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)

\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)

\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)

\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)

\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)

\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)

Ta có: 5 ⋮ 5

⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm) 

Hương Giang
10 tháng 11 2023 lúc 11:20

A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78

A =  (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)

A = 7.(1 + 72)  + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)

A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)

A = 7.50 + 72.50 + 75.40 + 76.50

A = 50.(7 + 72 + 75 + 76)

Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm

Nguyễn Thị Thương Hoài
10 tháng 11 2023 lúc 12:58

A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78

A =  (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)

A = 7.(1 + 72)  + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)

A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)

A = 7.50 + 72.50 + 75.50 + 76.50

A = 50.(7 + 72 + 75 + 76)

Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm

Thầy Hùng Olm
Xem chi tiết
Lê Song Phương
28 tháng 12 2022 lúc 18:21

Ta xét biểu thức \(A_1=7+7^2+7^3\) \(=7\left(1+7+7^2\right)\) \(=57.7⋮57\)

\(A_2=7^4+7^5+7^6\) \(=7^4\left(1+7+7^2\right)\) \(=57.7^4⋮57\)

...

\(A_{40}=7^{118}+7^{119}+7^{120}\) \(=7^{118}\left(1+7+7^2\right)⋮57\)

Vậy \(A=\sum\limits^{40}_{i=1}A_i\) đương nhiên chia hết cho 57 (đpcm)

hello !!!!!
28 tháng 12 2022 lúc 18:16

bài kt cuối kì phải tự làm  bạn ơi

Trần Phương Thảo
28 tháng 12 2022 lúc 18:27

\(A=7+7^2+7^3+...+7^{120}\)

  \(=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)

  \(=7.\left(1+7+7^2\right)+7^4.\left(1+7+7^2\right)+...+7^{118}.\left(1+7+7^2\right)\)

  \(=7.57+7^4.57+..+7^{118}.57\)

   \(=57.\left(7+7^4+...+7^{118}\right)\)

⇒ A chia hết cho 57

 

hà huy minh hiếu
Xem chi tiết
Huy Vu
7 tháng 11 2021 lúc 18:08

 á à thg hếu cx hỏi trên này cơ à XDDD

 

PHAN BÌNH NHẬT QUYÊN
Xem chi tiết

71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79

= ( 71 + 79 ) + ( 72 + 78 ) + ( 73 + 77 ) + ( 74 + 76 ) + 75

=     150           +           150              +      150                +          150           +         75

=                                       150        x          4         +     75 

=                                                   600       +      75

=                                                         675

Tìm x :

X x 7 + X x 2 = 108 

X  x ( 7 + 2 ) =  108

X  x    9         =   108

X                   =   108 : 9

X                   =      12

Đoàn Thu Thuỷ
16 tháng 9 2018 lúc 15:17

     

  \(71+72+73+74+75+76+77+78+79\)

\(=\left(71+79\right)+\left(72+78\right)+\left(73+77\right)+\left(74+76\right)+75\)

\(=150+150+150+150+75\)

\(=600+75\)

\(=675\)

\(X\)x\(7+X\)x\(2=108\)

   \(X\)x\(\left(7+2\right)=108\)

                  \(X\)x\(9=108\)

                          \(X=108:9\)

                         \(X=12\)

                 Vậy \(X=12\)

Park Jimin - Mai Thanh H...
16 tháng 9 2018 lúc 15:19

\(71+72+73+74+75+76+77+78+79\)

\(=\left(71+79\right)+\left(72+78\right)+\left(73+77\right)+\left(74+76\right)+75\)

\(=150+150+150+150+75\)

\(=150.4+75=600+75=675\)

\(7x+2x=108\Leftrightarrow x\left(7+2\right)=108\Leftrightarrow9x=108\)

\(\Leftrightarrow x=108:9\Leftrightarrow x=12\)

An Chu
Xem chi tiết
Kiều Vũ Linh
27 tháng 12 2021 lúc 13:38

\(A=7+7^2+7^3+...+7^7+7^8\)

a) Lũy thừa với cơ số 7 có chữ số tận cùng là số lẻ

Mà A có 8 số hạng

Nên a là số chẵn (vì có 8 số có chữ số tận cùng là chữ số lẻ cộng lại)

b) Các chữ số tận cùng của 8 số hạng trên lần lượt là:

7; 9; 3; 1; 7; 9; 3; 1

\(\Rightarrow A\) có chữ số tận cùng là 0

\(\Rightarrow A⋮5\)

Cách 2:

a) Ta có:

\(A=7+7^2+7^3+...+7^7+7^8\) \(=6725600\) có chữ số tận cùng là 0 nên A là số chẵn

b) Do A có chữ số tận cùng là 0 nên A chia hết cho 5

Damastyle
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 22:52

Đề bài yêu cầu gì?