\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)
Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$
$=7.57+7^4.57+...+7^{118}.57$
$=57(7+7^4+...+7^{118})\vdots 57$
Ta có đpcm.
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57