CM \(x-\sqrt{x}-1\ge0\forall x\)
Vẽ đồ thị các hàm số :
a ) \(y=\hept{\begin{cases}2x\forall x\ge0\\x\forall x< 0\end{cases}}\)
b ) \(y=\hept{\begin{cases}2x\forall x\ge0\\-\frac{1}{2}x\forall x< 0\end{cases}}\)
Cho biểu thức B=\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}\)
a) Rút gọn B
b) CMR: 0<A<\(\frac{8}{3}\)với\(\forall x\ge0;x\ne1\)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Chứng minh các bất đẳng thức sau :
a) \(e^x+\cos x\ge2+x-\dfrac{x^2}{2};\forall x\in\mathbb{R}\)
b) \(e^x-e^{-x}\ge2\ln\left(x+\sqrt{1+x^2}\right);\forall x\ge0\)
c) \(8\sin^2\dfrac{x}{2}+\sin2x>2x;\forall x\in\) (\(0;\pi\)]
Tìm GTNN của \(A=\left(x-1\right)^{100}+|x-1|+10\)
giải
Ta có: \(\hept{\begin{cases}\left(x-1\right)^{100}\ge0\forall x\\|x-1|\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x-1\right)^{100}+|x-1|\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{100}+|x-1|+10\ge0+10\forall x\)
Hay \(A\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min A =10 \(\Leftrightarrow x=1\)
Chứng minh rằng :
\(x^4-\sqrt{x^5}+x-\sqrt{x}+1>0,\forall\ge0\)
Hướng dẫn : Đặt \(\sqrt{x}=t\), xét hai trường hợp : \(0\le x< 1;x\ge1\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\) ta có:
\(f\left(t\right)=t^8-t^5+t^2-t+1\)
*)Với \(t=0;t=1\Rightarrow f\left(t\right)=1>\)
*)Với \(0\le t< 1\) thì \(f\left(t\right)=t^8+\left(t^2-t^5\right)+1-t\)
\(\left\{{}\begin{matrix}t^8>0\\1-t>0\\t^2-t^5=t^3\left(1-t\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(t\right)>0\)
*)Với \(t\ge1\) thì \(f\left(t\right)=t^5\left(t^3-1\right)+t\left(t-1\right)+1>0\)
Vậy \(f\left(t\right)>0\forall t\ge0\Rightarrow x^4-\sqrt{x^5}+x-\sqrt{x}+1>0\forall x\ge0\)
Cho:
\(P=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)\(-\)\(\dfrac{\sqrt{x}+1}{x-1}\) \(\left(x\ge0,x\ne1\right)\)
a) Rút gọn P
b\()\) CM: P < \(\dfrac{1}{3}\)
a) P = \(\dfrac{x+2}{\sqrt{x}^3-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\)
= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x-1}\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) Để \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)
<=> \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}< 0\)
<=> \(\dfrac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}< 0\)
Mà \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
<=> \(-x+2\sqrt{x}-1< 0\)
<=> \(-\left(\sqrt{x}-1\right)^2< 0\) (luôn đúng)
=> P \(< \dfrac{1}{3}\)
1. Tìm tất cả các đa thức \(P\left(x\right)\) khác đa thức 0 thỏa mãn \(P\left(2014\right)=2046\) và \(P\left(x\right)=\sqrt{P\left(x^2+1\right)-33}+32,\forall x\ge0\)
2. Tìm tất cả các đa thức \(P\left(x\right)\inℤ\left[x\right]\) bậc \(n\) thỏa mãn điều kiện sau: \(\left[P\left(2x\right)\right]^2=16P\left(x^2\right),\forall x\inℝ\)
1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.
a) CMR: \(\left(x^3+x^2+x+1\right)^2\ge16x^3\) với\(\forall x\ge0\)
b)Cho \(a;b;c>0\). CMR:
\(\sqrt{\dfrac{a}{b+c}}\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Lời giải:
a)
Áp dụng bất đẳng thức AM-GM:
\(x^3+x^2+x+1\geq 4\sqrt[4]{x^3.x^2.x.1}=4\sqrt[4]{x^6}\)
\(\Rightarrow (x^3+x^2+x+1)^2\geq 16\sqrt{x^6}\)
\(\Leftrightarrow (x^3+x^2+x+1)^2\geq 16x^3\) (đpcm)
Dấu bằng xảy ra khi \(x=1\)
b)
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \left(\frac{\frac{b+c}{a}+1}{2}\right)^2=\frac{1}{4}\left(\frac{b+c+a}{a}\right)^2\)
\(\Rightarrow \frac{a}{b+c}\geq 4\left(\frac{a}{a+b+c}\right)^2\Leftrightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Thực hiện tương tự với cac phân thức còn lại và cộng theo vế thu được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\geq \frac{2a+2b+2c}{a+b+c}=2\)
Dấu bằng xảy ra khi
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=1\Rightarrow a+b+c=2a=2b=2c\)
\(\Rightarrow a=b=c\Rightarrow \frac{b+c}{a}=2\neq 1\) (vô lý)
Do đó dấu bằng không xảy ra
Vì vậy: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)