Tính :
a) \(\int\limits^2_{-1}\left(5x^2-x+e^{0,5x}\right)dx\)
b) \(\int\limits^2_{0,5}\left(2\sqrt{x}+\dfrac{3}{x^2}+\cos x\right)dx\)
c) \(\int\limits^2_1\dfrac{dx}{\sqrt{2x+3}}\) (đặt \(t=\sqrt{2x+3}\) )
d) \(\int\limits^2_1\sqrt[3]{3x^3+4}x^2dx\) (đặt \(t=\sqrt[3]{3x^3+4}\) )
e) \(\int\limits^2_{-2}\left(x-2\right)\left|x\right|dx\)
g) \(\int\limits^0_1x\cos xdx\)
h) \(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{1+\sin2x+\cos2x}{\sin x+\cos x}dx\)
i) \(\int\limits^{\dfrac{\pi}{2}}_0e^x\sin xdx\)
k) \(\int\limits^e_1x^2\ln^2xdx\)
Tính các tích phân sau bằng phương pháp tính tích phân từng phần :
a) \(\int\limits^{e^4}_1\sqrt{x}\ln xdx\)
b) \(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{xdx}{\sin^2x}\)
c) \(\int\limits^{\pi}_0\left(\pi-x\right)\sin xdx\)
d) \(\int\limits^0_{-1}\left(2x+3\right)e^{-x}dx\)
Tính thể tích của vật thể tròn xoay khi các hình phẳng giới hạn bởi các đường sau quanh trục Ox :
a) \(y=x^3;y=1;x=3\)
b) \(y=\dfrac{2}{\pi}x;y=\sin x;x\in\left[0;\dfrac{\pi}{2}\right]\)
c) \(y=x^{\alpha};\alpha\in\mathbb{N}^{\circledast};y=0;x=0;x=1\)
Tính thể tích của vật thể tròn xoay khi các hình phẳng giới hạn bởi các đường sau quanh trục Ox :
a) \(y=x^3;y=1;x=3\)
b) \(y=\dfrac{2}{\pi}x;y=\sin x;x\in\left[0;\dfrac{\pi}{2}\right]\)
c) \(y=x^{\alpha};\alpha\in\mathbb{N}^{\circledast};y=0;x=0;x=1\)
Giải các phương trình sau :
a) \(\left(\dfrac{1}{2}\right)^{\log_{\dfrac{1}{3}}\left(x^2-3x+1\right)}\)
b) \(4x^2+3.3^{\sqrt{x}}+x.3^{\sqrt{x}}< 2x^2.3^{\sqrt{x}}+2x+6\)
c) \(\log_x4.\log_2\dfrac{5-12x}{12x-8}\ge2\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số :
a) \(f\left(x\right)=2x^3-2x^2-12x+1\) trên đoạn \(\left[-2;\dfrac{5}{2}\right]\)
b) \(f\left(x\right)=x^2\ln x\) trên đoạn \(\left[1;e\right]\)
c) \(f\left(x\right)=xe^{-x}\) trên nửa đoạn [0; +\(\infty\))
d) \(f\left(x\right)=2\sin x+\sin2x\) trên đoạn \(\left[0;\dfrac{3}{2}\pi\right]\)
Tính các tích phân sau :
a) \(\int\limits^4_{-2}\left(\dfrac{x-2}{x+3}\right)^2dx\) (đặt \(t=x+3\) )
b) \(\int\limits^6_{-4}\left|x+3\right|-\left|x-4\right|dx\)
c) \(\int\limits^2_{-3}\dfrac{dx}{\sqrt{x+7}+3}\) (đặt \(t=\sqrt{x+7}\) hoặc \(t=\sqrt{x+7}+3\) )
d) \(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{\cos x}{1+4\sin x}dx\)
e) \(\int\limits^2_1\dfrac{x^9}{x^{10}+4x^5+4}dx\) (đặt \(t=x^5\) )
g) \(\int\limits^3_0\left(x+2\right)e^{2x}dx\)
h) \(\int\limits^5_2\dfrac{\sqrt{4+x}}{x}dx\) (đặt \(t=\sqrt{4+x}\) )
Giải các phương trình sau :
a) \(5^{\cos\left(3x+\dfrac{\pi}{6}\right)}=1\)
b) \(6.4^x-13.6^x+6.9^x=0\)
c) \(7^{x^2}.5^{2x}=7\)
d) \(\log_4\left(x+2\right)\log_x2=1\)
e) \(\dfrac{\log_3x}{\log_93x}=\dfrac{\log_{27}9x}{\log_{81}27x}\)
g) \(\log_3x+\log_4\left(2x-2\right)=2\)
Tính các tích phân sau bằng phương pháp đổi biến số :
a) \(\int\limits^{\dfrac{\pi}{24}}_0\tan\left(\dfrac{\pi}{3}-4x\right)dx\) (đặt \(u=\cos\left(\dfrac{\pi}{3}-4x\right)\)
b) \(\int\limits^{\dfrac{3}{5}}_{\dfrac{\sqrt{3}}{5}}\dfrac{dx}{9+25x^2}\) (đặt \(x=\dfrac{3}{5}\tan t\))
c) \(\int\limits^{\dfrac{\pi}{2}}_0\sin^3x\cos^4xdx\) (đặt \(u=\cos x\))
d) \(\int\limits^{\dfrac{\pi}{4}}_{-\dfrac{\pi}{4}}\dfrac{\sqrt{1+\tan x}}{\cos^2x}dx\) (đặt \(u=\sqrt{1+\tan x}\))