Cho x\(\ge0\). CMR:
\(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\le\sqrt{x+9}\)
Rút gọn biểu thức: \(\sqrt{x}-\sqrt{x-\sqrt{x}+\dfrac{1}{4}}\) khi \(x\ge0\)
Rút gọn biểu thức \(P=\left(\dfrac{\sqrt{x^3+1}}{\sqrt{x}+1}+\sqrt{x}\right):\left(x+1\right);x\ge0\)
Rút gọn
a)\(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\left(x\ge0,y\ge0,x\ne y\right)\)
b)\(\dfrac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}\left(x\ge0\right)\)
c)\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
cho biểu thức
A=(\(\dfrac{x\sqrt{x}-x}{x-1}+\dfrac{4\sqrt{x}}{x+\sqrt{x}}\)) : \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ( với \(x\ge0,x\ne1\) )
a, rút gọn
b, tìm giá trị nhỏ nhất của biểu thức A
1) a) Rut gon \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\left(x\ge0\right),x\ne4\)
A=\(\left(\dfrac{x+\sqrt{x}+10}{x-9}+\dfrac{1}{\sqrt{3}-x}\right):\dfrac{1}{\sqrt{x}-3}\left(x\ge0;x\ne9\right)\) và B= \(\sqrt{x}+1\left(x\ge0;x\ne9\right)\)
a) Tính giá trị B khi x=16
b) Rút gọn A
c) Tìm x để A>B
Cho biểu thức: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\) (với \(x\ge0;x\ne4\)). Tìm x để: \(\left|P-2\right|>P-2\)
A = \(\frac{x-4\sqrt{x}+2}{\sqrt{x}-2}\) (\(x\ge0;x\ne4\))
B = \(\frac{x\sqrt{x}-1}{x-1}\) (\(x\ge0;x\ne1\))
C = \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\) ( \(x>0;x\ne1\))
D = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) (\(x\ge2\))
E = \(\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2}-2x}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2}-2x}\)