Giải phương trình.
\(\left|x+5\right|\) = 2x - 18
giải phương trình sau :
\(\left(2x^2-x\right)-9\left(2x^2-x\right)+18=0\) (đặt \(a=2x^2-x\))
Đề là \(\left(2x^2-x\right)^2+...\) hay là \(\left(2x^2-x\right)+...\) vậy bn?
Đặt \(2x^2-x=a\)
\(PT\Leftrightarrow a^2-9a+18=0\\ \Leftrightarrow a^2-3a-6a+18=0\\ \Leftrightarrow\left(a-3\right)\left(a-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x^2-x-3=0\\2x^2-x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(2x-3\right)\left(x+1\right)=0\\\left(x-2\right)\left(2x+3\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\\x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left(2x^2-x\right)+9\left(2x^2-x\right)+18=0\)
⇔\(\left(2x^2-x\right)\left(1+9\right)+18=0\)
⇔\(10\left(2x^2-x\right)+18=0\)
⇔\(10\left(2x^2-x\right)=-18\)
⇔\(2x^2-x=-\dfrac{9}{5}\)
⇔\(x\left(2x-1\right)=-\dfrac{9}{5}\)
⇔\(x=-\dfrac{9}{5}\) hay \(2x-1=-\dfrac{9}{5}\)
⇔\(x=-\dfrac{9}{5}\) hay \(2x=-\dfrac{4}{5}\)
⇔\(x=-\dfrac{9}{5}\) hay \(x=-\dfrac{2}{5}\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
Giải phương trình:
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\text{Đặt:}x+1=a\Rightarrow\left(2a-1\right)\left(2a+1\right)a^2=\left(4a^2-1\right)a^2=18\Leftrightarrow4a^2\left(4a^2-1\right)=72\)
\(\Rightarrow4a^2=9\left(\text{bạn tự giải phương trình dạng:}k^2+k=72\right)\Rightarrow a^2=\frac{9}{4}\Leftrightarrow a=\pm\frac{3}{2}\)
Đệ đặt khác :)
Đặt \(2x+2=k\Rightarrow x+1=\frac{k}{2}\)
\(pt\Leftrightarrow\left(t-1\right)\cdot\frac{t^2}{4}\cdot\left(t+1\right)=18\)
\(\Leftrightarrow\left(t^2-1\right)\cdot t^2=72\)
\(\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)
Đến đây quá EZ
Giải chi tiết hộ mk
1.Tổng bình phương các nghiệm nguyên của phương trình \(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
2.Tích các nghiệm của phương trình \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
Cảm ơn nhìu.
1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)
thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau
2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)
đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\
\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau
Nghiệm nguyên.
2x+3=(2x+1)+2
\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)
2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1
\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)
18 không chia hết co 4 vậy vô nghiệm nguyên.
Viết diễn dải dài suy luận logic rất nhanh
câu 2.
\(2\left(x^2+2\right)>0\forall x\) thực tế >=4 không cần vì mình cần so sánh với 0
\(\left(2\right)\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)
Vậy đáp số là (16-25)/4=-9/4
Giải các phương trình sau:
a. \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
b. \(\sqrt{\left(2x-1\right)^2}=4\)
c. \(\sqrt{\left(2x+1\right)^2}=3x-5\)
d. \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)
\(\Leftrightarrow25x-4x=-8-75\)
\(\Leftrightarrow21x=-83\)
hay \(x=-\dfrac{83}{21}\)
b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)
\(\Leftrightarrow\left|2x+1\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)
d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)
\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)
\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)
\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)
\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)
\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)
\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)
vậy: Phương trình vô nghiệm
Áp dụng giải bất phương trình
\(\dfrac{\left(2x+1\right)^4\left(x-3\right)^3}{\left(x+5\right)^2x^5}\le0\)
Lời giải:
ĐK: $x\neq -5; n\neq 0$
\(\frac{(2x+1)^4(x-3)^3}{(x+5)^2x^5}\leq 0\Leftrightarrow \left[\frac{(2x+1)^2(x-3)}{(x+5)x^2}\right]^2.\frac{x-3}{x}\leq 0\)
\(\Leftrightarrow \frac{x-3}{x}\leq 0\Rightarrow \left[\begin{matrix} x-3\geq 0; x< 0\\ x-3\leq 0; x>0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 0> x\geq 3(\text{vô lý})\\ 3\geq x>0\end{matrix}\right.\)
Vậy $3\geq x>0$
Giải phương trình sau : \(x^2-x-18+\left(2x+9\right)\sqrt{x+3}-2\sqrt{5x-1}=0\)
\(\left(2x-5\right)\left(\sqrt{x+3}-1\right)=2x^2-x-10\)
giải phương trình trên
Ta có:\(\left(2x-5\right)\left(\sqrt{x+3}-1\right)=2x^2-x-10\)
\(\Leftrightarrow\left(2x-5\right)\left(\sqrt{x+3}-1\right)-\left(2x^2-x-10\right)=0\)
\(\Leftrightarrow\left(2x-5\right).\dfrac{\left(x+2\right)}{\sqrt{x+3}+1}-\left(2x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)\left(\dfrac{1}{\sqrt{x+3}+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\\\dfrac{1}{\sqrt{x+3}+1}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\\\dfrac{1}{\sqrt{x+3}+1}=1\left(1\right)\end{matrix}\right.\)
Giải (1) ta có:
\(\left(1\right)\Leftrightarrow1=\sqrt{x+3}+1\)
\(\Leftrightarrow\sqrt{x+3}=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy,phương trình có 3 nghiệm là.....
Giải các phương trình :
a) \(\left|3x\right|=x+8\)
b) \(\left|-2x\right|=4x+18\)
c) \(\left|x-5\right|=3x\)
d) \(\left|x+2\right|=2x-10\)
a)|3x| = x + 8 ⇔[3x=x+8;x≥0−3x=x+8;x<0[3x=x+8;x≥0−3x=x+8;x<0
⇔[2x=8−4x=8[2x=8−4x=8
⇔[x=4;x=−2;[x=4;x=−2;
x = 4 thỏa mãn ĐK x ≥ 0 và x = -2 thỏa mãn ĐK x < 0
Vậy tập hợp nghiệm S = {4;-2}
b)|-2x| = 4x + 18 vì |-2x| = |2x| ⇔ |2x| = 4x +18
⇔ [2x=4x+18;x≥0−2x=4x+18;x<0⇔[−2x=18−6x=18[2x=4x+18;x≥0−2x=4x+18;x<0⇔[−2x=18−6x=18
⇔[x=−9;x=−3[x=−9;x=−3
x = -9 không thỏa mãn ĐK x ≥ 0
Vậy phương trình có tập nghiệm S = {-3}
c)|x – 5| = 3x ⇔[x−5=3x;x≥5−x+5=3x;x<5[x−5=3x;x≥5−x+5=3x;x<5
⇔[−5=2x5=4x[−5=2x5=4x
⇔[x=−52x=54[x=−52x=54
x=−52x=−52 không thỏa mãn ĐK x ≥ 5
Vậy tập hợp nghiệm của phương trình S={54}S={54}
d) |x + 2| = 2x – 10.
⇔[x+2=2x−10;x≥−2−x−2=2x−10;x<−2[x+2=2x−10;x≥−2−x−2=2x−10;x<−2
⇔[x=12x=83[x=12x=83
x=83x=83 không thỏa mãn điều kiện x < -2
Vậy tập hợp nghiệm của phương trình S ={12 }
Giải phương trình: \(\left(\sqrt{x+1}+1\right)\left(5-x\right)=2x\).
\(\left(\sqrt{x+1}+1\right)\left(5-x\right)=2x\left(1\right)\left(đk:x\ge-1\right)\)
\(đặt:\sqrt{x+1}=t\ge0\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(t+1\right)\left(6-t^2\right)=2t^2-2\)
\(-t^3+6t+6-t^2-2t^2+2=0\Leftrightarrow-t^3-3t^2+6t+8=0\Leftrightarrow-\left(t+1\right)\left(t-2\right)\left(t+4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-1\left(ktm\right)\\t=2\left(tm\right)\Rightarrow\sqrt{x+1}=2\Leftrightarrow x=3\left(tm\right)\\t=-4\left(ktm\right)\end{matrix}\right.\)