Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KYAN Gaming
Xem chi tiết
Lê Thị Thục Hiền
3 tháng 7 2021 lúc 21:15

\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)

\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)

\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)

Dấu "=" xảy ra khi a=2;b=3;c=4

Vậy \(P_{min}=33\)

Nguyễn Anh Minh
Xem chi tiết
Trần Hương Giang
8 tháng 4 2017 lúc 16:48

Bấm máy tính Casio fx-570 VN giải hệ phương trình 3 ẩn

Mode\(\rightarrow\) 5\(\rightarrow\) 2 :

Hệ số a b c d
PT 1 1 2 3 10
PT 2 2 3 1 13
PT 3 3 1 2 13

Ấn dấu = ta được a=3, b=2, c=1 (trên màn hình máy tính là x,y,z)

Neet
9 tháng 4 2017 lúc 10:43

2 Pt đầu khử a ,2 pt sau khử a ,ta được HPT 2 ẩn b,c

dbrby
Xem chi tiết
KYAN Gaming
Xem chi tiết
Yeutoanhoc
3 tháng 7 2021 lúc 20:34

Bài này mình làm lâu rồi á bann sửa dấu `2a+3b<=4` thành `2a+3b=4` nhé!undefined

Quang Đẹp Trai
Xem chi tiết
KAITO KUROBA
23 tháng 6 2023 lúc 0:33

x=y=z=2

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:12

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:15

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...

Yêu nè
Xem chi tiết
Phạm Thị Thùy Linh
15 tháng 3 2020 lúc 12:51

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)\(\Rightarrow a+3b-5c=-2\)

\(\Rightarrow3b=-2+5c-a\)\(\Rightarrow3b+2a-4c=-2+5c-a+2a-4c\)

\(\Rightarrow P=-2+a+c\)

Lại có : \(2a+b+2c=6\Rightarrow2\left(a+c\right)\le6\)

\(\Rightarrow a+c\le3\)

\(\Rightarrow P\le-2+3=1\Rightarrow P\le1\)

Dấu " = " sảy ra \(\Leftrightarrow\hept{\begin{cases}b=0\\3a-3c=4\\2a+2c=6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}b=0\\3a-3c=4\\3a+3c=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{13}{6}\\b=0\\c=\frac{5}{6}\end{cases}}\)

Chị chỉ tìm được Max thui 

Khách vãng lai đã xóa
Nguyễn Linh Chi
19 tháng 3 2020 lúc 20:47

\(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)

<=> \(\hept{\begin{cases}b+2c=6-2a\\4b-3c=4-3a\end{cases}}\)

<=> \(\hept{\begin{cases}c=\frac{20}{11}-\frac{5a}{11}\\b=\frac{26}{11}-\frac{12}{11}a\end{cases}}\)

P = \(2a+3\left(\frac{26}{11}-\frac{12}{11}a\right)-4\left(\frac{20}{11}-\frac{5a}{11}\right)\)

\(=-\frac{2}{11}+\frac{6}{11}a\ge-\frac{2}{11}\)

Dấu "=" xảy ra <=> a = 0 => c =20/11 và b = 26/11

Vậy min P = -2/11 tại a = 0; b = 26/11 và c= 20/11

Khách vãng lai đã xóa
Nguyễn Linh Chi
19 tháng 3 2020 lúc 22:46

Cách tìm max khác:

Ta có: \(\hept{\begin{cases}2a+b+2c=6\\3a+4b-3c=4\end{cases}}\)

<=> \(\hept{\begin{cases}2a+2c=6-b\\3a-3c=4-4b\end{cases}}\) <=> \(\hept{\begin{cases}a+c=3-\frac{b}{2}\\a-c=\frac{4}{3}-\frac{4b}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}a=\frac{13}{6}-\frac{11b}{12}\\c=\frac{5}{6}+\frac{5}{12}b\end{cases}}\)

khi đó P = \(2\left(\frac{13}{6}-\frac{11b}{12}\right)+3b-4\left(\frac{5}{6}+\frac{5}{12}b\right)=1-\frac{1}{2}b\le1\)

Dấu bằng xảy ra khi và chỉ khi b = 0 khi đó a = 13/6 và c = 5/6( thỏa mãn)

Vậy maxP = 1 tại a = 13/6 ;  b = 0 ; c = 5/6.

Khách vãng lai đã xóa
Phác Chí Mẫn
Xem chi tiết
Phác Chí Mẫn
4 tháng 3 2020 lúc 22:50
Khách vãng lai đã xóa
Xích U Lan
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 21:52

a. Bạn tự giải

b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\) 

\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)

\(\Leftrightarrow m^2-4m-3=0\)

\(\Leftrightarrow...\)