rút gọn biểu thức
A = sin\(^2\)18\(^o\) + cos\(^2\)18\(^o\) + tan18\(^o\) - cot72\(^o\)
Không cầm máy tính cầm tay tính giá trị biểu thức của các biểu thức sau
\(I=\dfrac{cos\left(-228^o\right)cot72^o}{tan\left(-142^o\right).sn108^o}-tan18^o\\ J=2sin\left(790^o+x\right)+cos\left(1260^o-x\right)+tan\left(630^o+x\right).tan\left(1260^o-x\right)\)
Bài 1: Tính
a,\(\dfrac{\sin27^o}{\cos63^o}\)
b,\(\tan18^o-\cot72^o\)
c, \(\sin^230^o+\cos^230^o\)
d, \(\tan27^o\times\cot27^o\)
a, sin 27o = cos 63o
\(\Rightarrow\) \(\frac{sin27^o}{cos63^o}\) = 1
b, tan 18o = cot 72o
\(\Rightarrow\) tan 18o - cot 72o = 0
c, sin230o + cos230o = 1
d, tan 27o x cos 27o = sin 27o \(\approx\) 0,45
Chúc bn học tốt
Không dùng máy tính rút gọn biểu thức và tính giá trị
\(H=cot15^o.cot35^o.cot55^o.cot75^o\\ I=tan10^o.tan20^o.tan30^o....tan80^o\\ K=sin^228^o+sin^236^o+sin^254^o+cos^2152^o\)
\(H=cot15^o.cot35^o.cot55^o.cot75^o\)
\(=\left(cot15^o.cot75^o\right).\left(cot35^o.cot55^o\right)\)
\(=\left(cot15^o.tan15^o\right).\left(cot35^o.tan35^o\right)\)
\(=1\)
\(I=tan10^o.tan20^o.tan30^o....tan80^o\)
\(=\left(tan10^o.cot10^o\right).\left(tan20^o.cot20^o\right).\left(tan30^o.cot30^o\right).\left(tan40^o.cot40^o\right)\)
\(=1\)
Rút gọn biểu thức sau: \(A=\sin^2\left(45^o+\alpha\right)-\sin^2\left(30^o-\alpha\right)-\sin15^o.\cos\left(15^o+2\alpha\right)\)
rút gọn biểu thức
A=\(\frac{1-2\sin\alpha\cos\alpha}{\sin^2-\cos^2}|\alpha\ne45^o\)
Lời giải:
\(A=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\sin ^2a+\cos ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}\)
Tính giá trị của các biểu thức sau:
a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)
b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)
c) \(P = 1 + {\tan ^2}{60^o}\)
d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)
a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)
Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)
Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)
b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)
Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)
Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)
c) \(P = 1 + {\tan ^2}{60^o}\)
Ta có: \(\tan {60^o} = \sqrt 3 \)
Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)
d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)
Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)
Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)
Biết sin 18o=\(\frac{\sqrt{5}-1}{4}\) Tính cos 18o, sin 72o, sin 162o, sin 108o, cos 108o, tan 72o
Do \(0< 18^0< 90^0\Rightarrow cos18^0=\sqrt{1-sin^218^0}=\frac{\sqrt{10+2\sqrt{5}}}{4}\)
\(sin72^0=sin\left(90^0-18^0\right)=cos18^0=...\)
\(sin162^0=sin\left(180^0-18^0\right)=sin18^0=...\)
\(sin108^0=sin\left(90^0+18^0\right)=cos18^0=...\)
\(cos108^0=cos\left(90^0+18^0\right)=-sin18^0=...\)
\(tan72^0=tan\left(90^0-18^0\right)=cot18^0=\frac{cos18^0}{sin18^0}=...\)
Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:
\(A = {(\sin {20^o} + \sin {70^o})^2} + {(\cos {20^o} + \cos {110^o})^2}\)
\(B = \tan {20^o} + \cot {20^o} + \tan {110^o} + \cot {110^o}.\)
Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} = - \cos {70^o} = - \sin {20^o}\)
\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)
Ta có: \(\tan {110^o} = - \tan {70^o} = - \cot {20^o};\;\cot {110^o} = - \cot {70^o} = - \tan {20^o}.\)
\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)
Tính giá trị đúng của các biểu thức sau (không dùng máy tính cầm tay):
a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)
b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)
c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)
d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)
e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)
a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)
Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\cos {0^o} = 1;\;\cos {120^o} = - \frac{1}{2}\)
Lại có: \(\cos {140^o} = - \cos \left( {{{180}^o} - {{40}^o}} \right) = - \cos {40^o}\)
\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)
b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)
Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)
Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)
\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)
c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)
Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)
\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)
d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)
Ta có: \(\tan {115^o} = - \tan \left( {{{180}^o} - {{115}^o}} \right) = - \tan {65^o}\)
Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)
\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)
e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)
Ta có: \(\cot {100^o} = - \cot \left( {{{180}^o} - {{100}^o}} \right) = - \cot {80^o}\)
Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o} =- \tan {10^o}\)
\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)