Giải và biện luận pt: \(\left|mx+2x-1\right|=\left|x\right|\)
giải và biện luận hệ pt \(\left\{{}\begin{matrix}mx+2my=-m\\2x+my=2\end{matrix}\right.\)
- Với \(m=0\Leftrightarrow2x=2\Rightarrow x=1\) hpt có vô số nghiệm
- Với \(m\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+2my=-m\\4x+2my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-4\right)x=-m-4\\4x+2my=4\end{matrix}\right.\)
+ Với \(m=4\) hệ vô nghiệm
+ Với \(m\ne4\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{-m-4}{m-4}=\dfrac{m+4}{4-m}\\y=\dfrac{2-2x}{m}=\dfrac{4}{m-4}\end{matrix}\right.\)
Vậy:
- Với \(m=0\) hệ vô số nghiệm
- Với \(m=4\) hệ vô nghiệm
- Với \(m\ne\left\{0;4\right\}\) hệ có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{m+4}{4-m}\\y=\dfrac{4}{m-4}\end{matrix}\right.\)
Giải và biện luận pt:
1, (2x + m -4)(2mx - x + m) = 0
2, (mx + 1)\(\sqrt{x-1}\) = 0
3, \(\frac{\left(m+1\right)x+m-2}{x+3}=m\)
4, \(\left|\frac{mx+1}{x-1}\right|=m\)
giải và biện luận pt:
\(\left(m^2-1\right)x^2-2\left(m-1\right)x+1=0\)
Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)
Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
Với \(m\ne\pm1\)
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)
PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)
PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)
Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)
Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)
Cho hệ pt \(\left\{{}\begin{matrix}mx-y=2\\mx+my=5\end{matrix}\right.\)
a. Giải và biện luận hệ pt
b. Tìm m để hệ có nghiệm thỏa mãn: x+y= 1- \(\dfrac{m^{2^{ }}}{m^2+3}\)
Giải và biện luận
a, \(m\left(2-x\right)+\left(m-1\right)^2>2x+5\)
b, \(\left(m-2\right)x+\frac{mx+2}{m}>\frac{3}{m}-2x\)
Giair và biện luận các bất PT sau theo tham số m:
1) x + 3m > 3 + mx
2) \(25m^2-2x< m^2x-25\)
3) \(3x-m^2\ge mx-4m+3\)
4) \(m\left(x-m\right)\ge3x-9\)
1. \(x+3m>3+mx.\Leftrightarrow x+3m-3-mx>0.\\ \Leftrightarrow\left(1-m\right)x+3m-3>0.\\ \Leftrightarrow\left(1-m\right)x>-3m+3.\left(1\right)\)
+) Nếu \(1-m=0.\Leftrightarrow m=1.\) Thay vào (1):
\(0x>-3.1+3.\Leftrightarrow0x>0\) (vô lý).
\(\Rightarrow\) Bất phương trình vô nghiệm.
+) Nếu \(1-m>0.\Leftrightarrow m< 1.\)
Khi đó (1) có nghiệm: \(x>\dfrac{-3m+3}{1-m}.\Leftrightarrow x>\dfrac{-3\left(m-1\right)}{-\left(m-1\right)}.\Leftrightarrow x>3.\)
+) Nếu \(1-m< 0.\Leftrightarrow m>1.\)
Khi đó (1) có nghiệm: \(x< \dfrac{-3m+3}{1-m}.\Leftrightarrow x< 3.\)
1/ x=3 , m=1
bl : tìm nghiệm , tạo khoảng thử nghiệm
2/ \(m=\pm\sqrt{-\dfrac{25-2x}{25-x}}\)
\(x=\dfrac{25\left(1+m^2\right)}{2+m^2}\)
3/ x=-m+1
m = \(\left\{{}\begin{matrix}3\\-x+1\end{matrix}\right.\)
4/ m= \(\left\{{}\begin{matrix}x-3\\3\end{matrix}\right.\)
x= m+3
Giải và biện luận hệ pt\(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\)
Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất
Giải, biện luận PT: \(\left(m+2\right)x^2-2\left(m-1\right)x+3-m=0\)
TH1: m=-2
Phương trình sẽ trở thành:
\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)
=>6x+5=0
=>x=-5/6
TH2: m<>-2
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)
\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)
\(=4\left(2m^2-3m-5\right)\)
\(=4\left(2m-5\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(2m-5)(m+1)>0
=>(2m-5)(m+1)>0
=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)
Để phương trình có nghiệm kép thì Δ=0
=>4(2m-5)(m+1)=0
=>(2m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)
Để phương trình vô nghiệm thì Δ<0
=>(2m-5)(m+1)<0
=>\(-1< m< \dfrac{5}{2}\)