Tìm GTNN
A= x^2 + y ^2 -xy - 3y + 2016
Tìm GTNN
a)\(\sqrt{x-2\sqrt{x-3}}\)
b)\(\sqrt{x^{2}+2y^{2}-6x+4y+11 }+\sqrt{x^{2}+3y^{2}+2x+6y+4 }\)
a: \(=\sqrt{x-3-2\sqrt{x-3}+3}\)
\(=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}>=\sqrt{2}\)
Dấu = xảy ra khi x-3=1
=>x=4
TÌM GTNN CỦA BIỂU THỨC: A=X2+XY+Y2-3X-3Y+2016
Bạn nhân 4 lên rồi tách ra hằng đẳng thức
Ta có
A=x2+xy+y2-3x-3y+2016
=>4A=4x2+4xy+y2 -6(2x+y) + 9 + 3(y2-2y+1) +8052
=(2x+y)2-6(2x+y)+9 + 3(y-1)2 +8052
=(2x+y-3)2+3(y-1)2+8052>= 8052
=>A>=2013
Dấu bang xay ra khi x=y=1
Ta có A= x2+xy+y2+3x-3y+2016
=> 2A= 2x2+2xy+2y2+6x-6y+4032
=> 2A=(x2+2xy+y2)+(x2+6x+9)+(y2-6y+9)+ 4014
=> 2A= (x+y)2+ (x+3)2+(y-3)2+4014
=> 2A >= 4014=> A>=2007
Dấu "=" xảy ra khi x=-3; y=-3
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)
\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)
\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)
\(=5\left(a+b\right)=5.2016=10080\)
alibaba nguyễn Em kiểm tra lại bài làm của mình nhé!
Nguyễn Linh Chi haha, em nhìn ra rối, chỗ dấu "=" thứ 2 phải sửa lại thành dấu "+" ,còn anh ấy phân tích có sai chỗ nào thì em ko biết:D (hình như là đúng)
tìm giá trị nhỏ nhất của : P=(x-2015)^2 + (x+2016)^2
giải phương trình : \(2x^2-xy-y^2+3x+3y-9=0\)
x2+xy+y2-3x-3y+2016
Tìm GTNN của bt
\(a,A=x^2+xy+y^2-3x-3y+2016\)
\(b,B=2x^2+2xy+y^2-2x+2y+2011\)
ta có :
Giải hệ phương trình: \(\begin{cases}y^3-3y^2-6x+2=\frac{\sqrt{y^3+6x+10}-\sqrt{2y^3-3y^2}}{x^2+2x+2016}\\\sqrt{2x^2-xy+x}=3y-2x-3\end{cases}\)
tìm giá trị nhỏ nhất:
B = x2 + xy + y2 - 3x - 3y + 2016
hộ em cái ạ !!!!!!
bn đăng hoài và mk cũng rất chú ý tới bài này nhưng bài này k có GTNN, MONG BN XEM LẠI ĐỀ
\(B=x^2+xy+y^2-3x-3y+2016\)
\(=x^2+xy-3x+y^2-3y+2016\)
\(=x^2+x\left(y-3\right)+y^2-3y+2016\)
\(=x^2+2.x.\frac{y-3}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y-\left(\frac{y-3}{2}\right)^2+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2-6y+9}{4}+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+y^2-3y-\frac{y^2}{4}+\frac{3}{2}y-\frac{9}{4}+2016\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}y^2-\frac{3}{2}y+\frac{8055}{4}\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y^2-2y+1\right)+2013=\left(x+\frac{y-3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2013\ge2013\) (với mọi x,y)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{y-3}{2}=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy minB=2013 khi x=y=1
Bài này tìm đc GTNN nhé
siêu đẳng, đây mới là thần tuong toan hoc cua tui, nghiêng mk bái phục bn, cần phải nick tên thật đi bn
1.tìm GTNN
A=(x^2+x)(x^2+x-4)
2. cho x,y,z dương thỏa mãn x+y+z=1
tìm GTNN:
P=x^2/(y+z)+y^2/(x+z)+z^2/(x+y)
2. \(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{1}{2}\)
\(\Rightarrow P_{min}=\dfrac{1}{2}\) khi \(\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\Rightarrow x=y=z=\dfrac{1}{3}\)
1, đặt \(x^2+x=t\)
=>\(A=t\left(t-4\right)=t^2-4t=t^2-4t+4-4\)
\(=>A=\left(t-2\right)^2-4\ge-4\) dấu"=' xảy ra\(t=2\)
\(=>x^2+x=2< =>x^2+x-2=0\)
\(< =>x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}=0\)
\(< =>\left(x+\dfrac{1}{2}\right)^2-\left(\dfrac{3}{2}\right)^2=0< =>\left(x-1\right)\left(x+2\right)=0\)
\(=>\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy Amin=-4<=>\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
B2
\(=>P=\dfrac{x^2}{y+z}+\dfrac{y+z}{4}+\dfrac{y^2}{x+z}+\dfrac{x+z}{4}+\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\)
\(-\left(\dfrac{y+z+x+z+x+y}{4}\right)\)
áp dụng BDT AM-GM
\(=>\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{4}}=x^{ }\left(1\right)\)
\(\)tương tự \(=>\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\left(2\right)\)
\(=>\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\left(3\right)\)
(1)(2)(3) \(=>P\ge x+y+z-\dfrac{1}{2}.x+y+z=1-\dfrac{1}{2}=\dfrac{1}{2}\)
dấu"=" xảy ra<=>x=y=z=1/3